|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Scott Morrison. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Scott Morrison |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module category_theory.monoidal.internal.functor_category |
| 7 | +! leanprover-community/mathlib commit f153a85a8dc0a96ce9133fed69e34df72f7f191f |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.CategoryTheory.Monoidal.CommMon_ |
| 12 | +import Mathlib.CategoryTheory.Monoidal.FunctorCategory |
| 13 | + |
| 14 | +/-! |
| 15 | +# `Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D` |
| 16 | +
|
| 17 | +When `D` is a monoidal category, |
| 18 | +monoid objects in `C ⥤ D` are the same thing as functors from `C` into the monoid objects of `D`. |
| 19 | +
|
| 20 | +This is formalised as: |
| 21 | +* `monFunctorCategoryEquivalence : Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D` |
| 22 | +
|
| 23 | +The intended application is that as `Ring ≌ Mon_ Ab` (not yet constructed!), |
| 24 | +we have `presheaf Ring X ≌ presheaf (Mon_ Ab) X ≌ Mon_ (presheaf Ab X)`, |
| 25 | +and we can model a module over a presheaf of rings as a module object in `presheaf Ab X`. |
| 26 | +
|
| 27 | +## Future work |
| 28 | +Presumably this statement is not specific to monoids, |
| 29 | +and could be generalised to any internal algebraic objects, |
| 30 | +if the appropriate framework was available. |
| 31 | +-/ |
| 32 | + |
| 33 | + |
| 34 | +universe v₁ v₂ u₁ u₂ |
| 35 | + |
| 36 | +open CategoryTheory MonoidalCategory |
| 37 | + |
| 38 | +namespace CategoryTheory.Monoidal |
| 39 | + |
| 40 | +variable (C : Type u₁) [Category.{v₁} C] |
| 41 | + |
| 42 | +variable (D : Type u₂) [Category.{v₂} D] [MonoidalCategory.{v₂} D] |
| 43 | + |
| 44 | +namespace MonFunctorCategoryEquivalence |
| 45 | + |
| 46 | +variable {C D} |
| 47 | + |
| 48 | +-- porting note: the `obj` field of `functor : Mon_ (C ⥤ D) ⥤ C ⥤ Mon_ D` defined below |
| 49 | +-- had to be defined separately as `Functor.obj` in order to speed up the compilation |
| 50 | +/-- A monoid object in a functor category induces a functor to the category of monoid objects. -/ |
| 51 | +@[simps] |
| 52 | +def Functor.obj (A : Mon_ (C ⥤ D)) : C ⥤ Mon_ D where |
| 53 | + obj X := |
| 54 | + { X := A.X.obj X |
| 55 | + one := A.one.app X |
| 56 | + mul := A.mul.app X |
| 57 | + one_mul := congr_app A.one_mul X |
| 58 | + mul_one := congr_app A.mul_one X |
| 59 | + mul_assoc := congr_app A.mul_assoc X } |
| 60 | + map f := |
| 61 | + { hom := A.X.map f |
| 62 | + one_hom := by rw [← A.one.naturality, tensorUnit_map]; dsimp; rw [Category.id_comp] |
| 63 | + mul_hom := by dsimp; rw [← A.mul.naturality, tensorObj_map] } |
| 64 | + map_id X := by ext; dsimp; rw [CategoryTheory.Functor.map_id] |
| 65 | + map_comp f g := by ext; dsimp; rw [Functor.map_comp] |
| 66 | + |
| 67 | +/-- Functor translating a monoid object in a functor category |
| 68 | +to a functor into the category of monoid objects. |
| 69 | +-/ |
| 70 | +@[simps] |
| 71 | +def functor : Mon_ (C ⥤ D) ⥤ C ⥤ Mon_ D where |
| 72 | + obj := Functor.obj |
| 73 | + map f := |
| 74 | + { app := fun X => |
| 75 | + { hom := f.hom.app X |
| 76 | + one_hom := congr_app f.one_hom X |
| 77 | + mul_hom := congr_app f.mul_hom X } } |
| 78 | +set_option linter.uppercaseLean3 false in |
| 79 | +#align category_theory.monoidal.Mon_functor_category_equivalence.functor CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor |
| 80 | + |
| 81 | +-- porting note: the `obj` field of `inverse : (C ⥤ Mon_ D) ⥤ Mon_ (C ⥤ D)` defined below |
| 82 | +-- had to be defined separately as `Inverse.obj` in order to speed up the compilation |
| 83 | +/-- A functor to the category of monoid objects can be translated as a monoid object |
| 84 | +in the functor category. -/ |
| 85 | +@[simps] |
| 86 | +def Inverse.obj (F : C ⥤ Mon_ D) : Mon_ (C ⥤ D) where |
| 87 | + X := F ⋙ Mon_.forget D |
| 88 | + one := { app := fun X => (F.obj X).one } |
| 89 | + mul := { app := fun X => (F.obj X).mul } |
| 90 | + one_mul := by ext X; exact (F.obj X).one_mul |
| 91 | + mul_one := by ext X; exact (F.obj X).mul_one |
| 92 | + mul_assoc := by ext X; exact (F.obj X).mul_assoc |
| 93 | + |
| 94 | +/-- Functor translating a functor into the category of monoid objects |
| 95 | +to a monoid object in the functor category |
| 96 | +-/ |
| 97 | +@[simps] |
| 98 | +def inverse : (C ⥤ Mon_ D) ⥤ Mon_ (C ⥤ D) where |
| 99 | + obj := Inverse.obj |
| 100 | + map α := |
| 101 | + { hom := |
| 102 | + { app := fun X => (α.app X).hom |
| 103 | + naturality := fun X Y f => congr_arg Mon_.Hom.hom (α.naturality f) } |
| 104 | + one_hom := by ext x; dsimp; rw [(α.app x).one_hom] |
| 105 | + mul_hom := by ext x; dsimp; rw [(α.app x).mul_hom] } |
| 106 | +set_option linter.uppercaseLean3 false in |
| 107 | +#align category_theory.monoidal.Mon_functor_category_equivalence.inverse CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverse |
| 108 | + |
| 109 | +/-- The unit for the equivalence `Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D`. |
| 110 | +-/ |
| 111 | +@[simps!] |
| 112 | +def unitIso : 𝟭 (Mon_ (C ⥤ D)) ≅ functor ⋙ inverse := |
| 113 | + NatIso.ofComponents |
| 114 | + (fun A => |
| 115 | + { hom := |
| 116 | + { hom := { app := fun _ => 𝟙 _ } |
| 117 | + one_hom := by ext X; dsimp; simp only [Category.comp_id] |
| 118 | + mul_hom := by |
| 119 | + ext X; dsimp; simp only [tensor_id, Category.id_comp, Category.comp_id] } |
| 120 | + inv := |
| 121 | + { hom := { app := fun _ => 𝟙 _ } |
| 122 | + one_hom := by ext X; dsimp; simp only [Category.comp_id] |
| 123 | + mul_hom := by |
| 124 | + ext X |
| 125 | + dsimp |
| 126 | + simp only [tensor_id, Category.id_comp, Category.comp_id] } }) |
| 127 | + fun f => by |
| 128 | + ext X |
| 129 | + simp only [Functor.id_map, Mon_.comp_hom', NatTrans.comp_app, Category.comp_id, |
| 130 | + Functor.comp_map, inverse_map_hom_app, functor_map_app_hom, Category.id_comp] |
| 131 | +set_option linter.uppercaseLean3 false in |
| 132 | +#align category_theory.monoidal.Mon_functor_category_equivalence.unit_iso CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso |
| 133 | + |
| 134 | +/-- The counit for the equivalence `Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D`. |
| 135 | +-/ |
| 136 | +@[simps!] |
| 137 | +def counitIso : inverse ⋙ functor ≅ 𝟭 (C ⥤ Mon_ D) := |
| 138 | + NatIso.ofComponents |
| 139 | + (fun A => |
| 140 | + NatIso.ofComponents |
| 141 | + (fun X => |
| 142 | + { hom := { hom := 𝟙 _ } |
| 143 | + inv := { hom := 𝟙 _ } }) |
| 144 | + (by aesop_cat)) |
| 145 | + (by aesop_cat) |
| 146 | +set_option linter.uppercaseLean3 false in |
| 147 | +#align category_theory.monoidal.Mon_functor_category_equivalence.counit_iso CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso |
| 148 | + |
| 149 | +end MonFunctorCategoryEquivalence |
| 150 | + |
| 151 | +open MonFunctorCategoryEquivalence |
| 152 | + |
| 153 | +/-- When `D` is a monoidal category, |
| 154 | +monoid objects in `C ⥤ D` are the same thing |
| 155 | +as functors from `C` into the monoid objects of `D`. |
| 156 | +-/ |
| 157 | +@[simps] |
| 158 | +def monFunctorCategoryEquivalence : Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D where |
| 159 | + functor := functor |
| 160 | + inverse := inverse |
| 161 | + unitIso := unitIso |
| 162 | + counitIso := counitIso |
| 163 | +set_option linter.uppercaseLean3 false in |
| 164 | +#align category_theory.monoidal.Mon_functor_category_equivalence CategoryTheory.Monoidal.monFunctorCategoryEquivalence |
| 165 | + |
| 166 | +variable [BraidedCategory.{v₂} D] |
| 167 | + |
| 168 | +namespace CommMonFunctorCategoryEquivalence |
| 169 | + |
| 170 | +variable {C D} |
| 171 | + |
| 172 | +/-- Functor translating a commutative monoid object in a functor category |
| 173 | +to a functor into the category of commutative monoid objects. |
| 174 | +-/ |
| 175 | +@[simps!] |
| 176 | +def functor : CommMon_ (C ⥤ D) ⥤ C ⥤ CommMon_ D where |
| 177 | + obj A := |
| 178 | + { (monFunctorCategoryEquivalence C D).functor.obj A.toMon_ with |
| 179 | + obj := fun X => |
| 180 | + { ((monFunctorCategoryEquivalence C D).functor.obj A.toMon_).obj X with |
| 181 | + mul_comm := congr_app A.mul_comm X } } |
| 182 | + map f := { app := fun X => ((monFunctorCategoryEquivalence C D).functor.map f).app X } |
| 183 | +set_option linter.uppercaseLean3 false in |
| 184 | +#align category_theory.monoidal.CommMon_functor_category_equivalence.functor CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor |
| 185 | + |
| 186 | +/-- Functor translating a functor into the category of commutative monoid objects |
| 187 | +to a commutative monoid object in the functor category |
| 188 | +-/ |
| 189 | +@[simps!] |
| 190 | +def inverse : (C ⥤ CommMon_ D) ⥤ CommMon_ (C ⥤ D) where |
| 191 | + obj F := |
| 192 | + { (monFunctorCategoryEquivalence C D).inverse.obj (F ⋙ CommMon_.forget₂Mon_ D) with |
| 193 | + mul_comm := by ext X; exact (F.obj X).mul_comm } |
| 194 | + map α := (monFunctorCategoryEquivalence C D).inverse.map (whiskerRight α _) |
| 195 | +set_option linter.uppercaseLean3 false in |
| 196 | +#align category_theory.monoidal.CommMon_functor_category_equivalence.inverse CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse |
| 197 | + |
| 198 | +/-- The unit for the equivalence `CommMon_ (C ⥤ D) ≌ C ⥤ CommMon_ D`. |
| 199 | +-/ |
| 200 | +@[simps!] |
| 201 | +def unitIso : 𝟭 (CommMon_ (C ⥤ D)) ≅ functor ⋙ inverse := |
| 202 | + NatIso.ofComponents |
| 203 | + (fun A => |
| 204 | + { hom := |
| 205 | + { hom := { app := fun _ => 𝟙 _ } |
| 206 | + one_hom := by ext X; dsimp; simp only [Category.comp_id] |
| 207 | + mul_hom := by ext X; dsimp; simp only [tensor_id, Category.id_comp, Category.comp_id] } |
| 208 | + inv := |
| 209 | + { hom := { app := fun _ => 𝟙 _ } |
| 210 | + one_hom := by ext X; dsimp; simp only [Category.comp_id] |
| 211 | + mul_hom := by |
| 212 | + ext X |
| 213 | + dsimp |
| 214 | + simp only [tensor_id, Category.id_comp, Category.comp_id] } }) |
| 215 | + fun f => by |
| 216 | + ext X |
| 217 | + dsimp |
| 218 | + simp only [Category.id_comp, Category.comp_id] |
| 219 | +set_option linter.uppercaseLean3 false in |
| 220 | +#align category_theory.monoidal.CommMon_functor_category_equivalence.unit_iso CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.unitIso |
| 221 | + |
| 222 | +/-- The counit for the equivalence `CommMon_ (C ⥤ D) ≌ C ⥤ CommMon_ D`. |
| 223 | +-/ |
| 224 | +@[simps!] |
| 225 | +def counitIso : inverse ⋙ functor ≅ 𝟭 (C ⥤ CommMon_ D) := |
| 226 | + NatIso.ofComponents |
| 227 | + (fun A => |
| 228 | + NatIso.ofComponents |
| 229 | + (fun X => |
| 230 | + { hom := { hom := 𝟙 _ } |
| 231 | + inv := { hom := 𝟙 _ } }) |
| 232 | + (by aesop_cat)) |
| 233 | + (by aesop_cat) |
| 234 | +set_option linter.uppercaseLean3 false in |
| 235 | +#align category_theory.monoidal.CommMon_functor_category_equivalence.counit_iso CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.counitIso |
| 236 | + |
| 237 | +end CommMonFunctorCategoryEquivalence |
| 238 | + |
| 239 | +open CommMonFunctorCategoryEquivalence |
| 240 | + |
| 241 | +/-- When `D` is a braided monoidal category, |
| 242 | +commutative monoid objects in `C ⥤ D` are the same thing |
| 243 | +as functors from `C` into the commutative monoid objects of `D`. |
| 244 | +-/ |
| 245 | +@[simps] |
| 246 | +def commMonFunctorCategoryEquivalence : CommMon_ (C ⥤ D) ≌ C ⥤ CommMon_ D where |
| 247 | + functor := functor |
| 248 | + inverse := inverse |
| 249 | + unitIso := unitIso |
| 250 | + counitIso := counitIso |
| 251 | +set_option linter.uppercaseLean3 false in |
| 252 | +#align category_theory.monoidal.CommMon_functor_category_equivalence CategoryTheory.Monoidal.commMonFunctorCategoryEquivalence |
| 253 | + |
| 254 | +end CategoryTheory.Monoidal |
0 commit comments