Skip to content

Commit 09c7941

Browse files
committed
chore(Logic/Equiv): golf entire trans_symm_eq_symm_trans_symm using rfl (#28565)
Co-authored-by: euprunin <euprunin@users.noreply.github.com>
1 parent aac6b4a commit 09c7941

File tree

1 file changed

+1
-2
lines changed

1 file changed

+1
-2
lines changed

Mathlib/Logic/Equiv/PartialEquiv.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -602,8 +602,7 @@ theorem coe_trans_symm : ((e.trans e').symm : γ → α) = e.symm ∘ e'.symm :=
602602
theorem trans_apply {x : α} : (e.trans e') x = e' (e x) :=
603603
rfl
604604

605-
theorem trans_symm_eq_symm_trans_symm : (e.trans e').symm = e'.symm.trans e.symm := by
606-
cases e; cases e'; rfl
605+
theorem trans_symm_eq_symm_trans_symm : (e.trans e').symm = e'.symm.trans e.symm := rfl
607606

608607
@[simp, mfld_simps]
609608
theorem trans_source : (e.trans e').source = e.source ∩ e ⁻¹' e'.source :=

0 commit comments

Comments
 (0)