Skip to content

Commit 0a43139

Browse files
committed
chore(AtTop/Monoid): add multiplicative versions (#21878)
Also review names in the file. Moves: - Filter.Tendsto.atTop_mul_atTop ->Filter.Tendsto.atTop_mul_atTop₀ - Filter.Tendsto.atBot_mul_atBot ->Filter.Tendsto.atBot_mul_atBot₀ - Filter.Tendsto.atTop_of_mul_const -> Filter.Tendsto.atTop_of_mul_const₀ - Filter.Tendsto.atTop_of_const_mul -> Filter.Tendsto.atTop_of_const_mul₀
1 parent 6612768 commit 0a43139

File tree

12 files changed

+228
-110
lines changed

12 files changed

+228
-110
lines changed

Mathlib/Algebra/QuadraticDiscriminant.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -125,9 +125,9 @@ theorem discrim_le_zero (h : ∀ x : K, 0 ≤ a * (x * x) + b * x + c) : discrim
125125
obtain ha | rfl | ha : a < 0 ∨ a = 00 < a := lt_trichotomy a 0
126126
-- if a < 0
127127
· have : Tendsto (fun x => (a * x + b) * x + c) atTop atBot :=
128-
tendsto_atBot_add_const_right _ c
129-
((tendsto_atBot_add_const_right _ b (tendsto_id.const_mul_atTop_of_neg ha)).atBot_mul_atTop
130-
tendsto_id)
128+
tendsto_atBot_add_const_right _ c <|
129+
(tendsto_atBot_add_const_right _ b (tendsto_id.const_mul_atTop_of_neg ha)).atBot_mul_atTop
130+
tendsto_id
131131
rcases (this.eventually (eventually_lt_atBot 0)).exists with ⟨x, hx⟩
132132
exact False.elim ((h x).not_lt <| by rwa [← mul_assoc, ← add_mul])
133133
-- if a = 0

Mathlib/Analysis/Complex/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ theorem tendsto_abs_cocompact_atTop : Tendsto abs (cocompact ℂ) atTop :=
150150
/-- The `normSq` function on `ℂ` is proper. -/
151151
theorem tendsto_normSq_cocompact_atTop : Tendsto normSq (cocompact ℂ) atTop := by
152152
simpa [mul_self_abs]
153-
using tendsto_abs_cocompact_atTop.atTop_mul_atTop tendsto_abs_cocompact_atTop
153+
using tendsto_abs_cocompact_atTop.atTop_mul_atTop tendsto_abs_cocompact_atTop
154154

155155
open ContinuousLinearMap
156156

Mathlib/Analysis/SpecialFunctions/Gaussian/FourierTransform.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ theorem tendsto_verticalIntegral (hb : 0 < b.re) (c : ℝ) :
118118
refine (tendsto_exp_atBot.comp (tendsto_neg_atTop_atBot.comp ?_)).const_mul _
119119
apply tendsto_atTop_add_const_right
120120
simp_rw [sq, ← mul_assoc, ← sub_mul]
121-
refine Tendsto.atTop_mul_atTop (tendsto_atTop_add_const_right _ _ ?_) tendsto_id
121+
refine Tendsto.atTop_mul_atTop (tendsto_atTop_add_const_right _ _ ?_) tendsto_id
122122
exact (tendsto_const_mul_atTop_of_pos hb).mpr tendsto_id
123123

124124
theorem integrable_cexp_neg_mul_sq_add_real_mul_I (hb : 0 < b.re) (c : ℝ) :

Mathlib/Analysis/SpecialFunctions/Gaussian/GaussianIntegral.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ theorem exp_neg_mul_rpow_isLittleO_exp_neg {p b : ℝ} (hb : 0 < b) (hp : 1 < p)
3737
rw [rpow_sub_one hx.ne']
3838
field_simp [hx.ne']
3939
ring
40-
apply Tendsto.atTop_mul_atTop tendsto_id
40+
apply tendsto_id.atTop_mul_atTop
4141
refine tendsto_atTop_add_const_right atTop (-1 : ℝ) ?_
4242
exact Tendsto.const_mul_atTop hb (tendsto_rpow_atTop (by linarith))
4343

Mathlib/Analysis/SpecialFunctions/Gaussian/PoissonSummation.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -40,8 +40,8 @@ lemma rexp_neg_quadratic_isLittleO_rpow_atTop {a : ℝ} (ha : a < 0) (b s : ℝ)
4040
have : (fun x ↦ -x - (a * x ^ 2 + b * x)) = fun x ↦ x * (-a * x - (b + 1)) := by
4141
ext1 x; ring_nf
4242
rw [this]
43-
exact tendsto_id.atTop_mul_atTop <|
44-
Filter.tendsto_atTop_add_const_right _ _ <| tendsto_id.const_mul_atTop (neg_pos.mpr ha)
43+
exact tendsto_id.atTop_mul_atTop₀ <| tendsto_atTop_add_const_right _ _ <|
44+
tendsto_id.const_mul_atTop (neg_pos.mpr ha)
4545

4646
lemma cexp_neg_quadratic_isLittleO_rpow_atTop {a : ℂ} (ha : a.re < 0) (b : ℂ) (s : ℝ) :
4747
(fun x : ℝ ↦ cexp (a * x ^ 2 + b * x)) =o[atTop] (· ^ s) := by

Mathlib/Combinatorics/Extremal/RuzsaSzemeredi.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -248,7 +248,7 @@ theorem ruzsaSzemerediNumberNat_asymptotic_lower_bound :
248248
exact (isBigO_refl ..).const_mul_right (by norm_num)
249249
refine IsLittleO.right_isBigO_sub ?_
250250
simpa [div_eq_inv_mul, Function.comp_def] using
251-
.atTop_of_const_mul zero_lt_three (by simp [tendsto_natCast_atTop_atTop])
251+
.atTop_of_const_mul zero_lt_three (by simp [tendsto_natCast_atTop_atTop])
252252
· rw [IsBigO_def]
253253
refine ⟨12, ?_⟩
254254
simp only [IsBigOWith, norm_natCast, eventually_atTop]

Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -112,7 +112,7 @@ lemma summable_pow_mul_jacobiTheta₂_term_bound (S : ℝ) {T : ℝ} (hT : 0 < T
112112
conv =>
113113
enter [1, n]
114114
rw [show -(-π * (T * n ^ 2 - 2 * S * n) - -1 * n) = n * (π * T * n - (2 * π * S + 1)) by ring]
115-
refine tendsto_natCast_atTop_atTop.atTop_mul_atTop (tendsto_atTop_add_const_right _ _ ?_)
115+
refine tendsto_natCast_atTop_atTop.atTop_mul_atTop (tendsto_atTop_add_const_right _ _ ?_)
116116
exact tendsto_natCast_atTop_atTop.const_mul_atTop (mul_pos pi_pos hT)
117117

118118
/-- The series defining the theta function is summable if and only if `0 < im τ`. -/
@@ -133,7 +133,7 @@ lemma summable_jacobiTheta₂_term_iff (z τ : ℂ) : Summable (jacobiTheta₂_t
133133
enter [1, n]
134134
rw [show -π * n ^ 2 * τ.im - 2 * π * n * z.im =
135135
n * (n * (-π * τ.im) - 2 * π * z.im) by ring]
136-
refine tendsto_exp_atTop.comp (tendsto_natCast_atTop_atTop.atTop_mul_atTop ?_)
136+
refine tendsto_exp_atTop.comp (tendsto_natCast_atTop_atTop.atTop_mul_atTop ?_)
137137
exact tendsto_atTop_add_const_right _ _ (tendsto_natCast_atTop_atTop.atTop_mul_const
138138
(mul_pos_of_neg_of_neg (neg_lt_zero.mpr pi_pos) hτ))
139139
· -- case im τ = 0: 3-way split according to `im z`

Mathlib/Order/Filter/AtTopBot/Field.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,8 +26,8 @@ variable [LinearOrderedSemifield α] {l : Filter β} {f : β → α} {r c : α}
2626
if and only if `f` tends to infinity along the same filter. -/
2727
theorem tendsto_const_mul_atTop_of_pos (hr : 0 < r) :
2828
Tendsto (fun x => r * f x) l atTop ↔ Tendsto f l atTop :=
29-
fun h => h.atTop_of_const_mul hr, fun h =>
30-
Tendsto.atTop_of_const_mul (inv_pos.2 hr) <| by simpa only [inv_mul_cancel_left₀ hr.ne'] ⟩
29+
fun h => h.atTop_of_const_mul hr, fun h =>
30+
Tendsto.atTop_of_const_mul (inv_pos.2 hr) <| by simpa only [inv_mul_cancel_left₀ hr.ne'] ⟩
3131

3232
/-- If `r` is a positive constant, `fun x ↦ f x * r` tends to infinity along a filter
3333
if and only if `f` tends to infinity along the same filter. -/

Mathlib/Order/Filter/AtTopBot/Group.lean

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -24,8 +24,7 @@ variable [OrderedAddCommGroup β] (l : Filter α) {f g : α → β}
2424

2525
theorem tendsto_atTop_add_left_of_le' (C : β) (hf : ∀ᶠ x in l, C ≤ f x) (hg : Tendsto g l atTop) :
2626
Tendsto (fun x => f x + g x) l atTop :=
27-
@tendsto_atTop_of_add_bdd_above_left' _ _ _ l (fun x => -f x) (fun x => f x + g x) (-C) (by simpa)
28-
(by simpa)
27+
.atTop_of_isBoundedUnder_le_add (f := -f) ⟨-C, by simpa⟩ (by simpa)
2928

3029
theorem tendsto_atBot_add_left_of_ge' (C : β) (hf : ∀ᶠ x in l, f x ≤ C) (hg : Tendsto g l atBot) :
3130
Tendsto (fun x => f x + g x) l atBot :=
@@ -41,8 +40,7 @@ theorem tendsto_atBot_add_left_of_ge (C : β) (hf : ∀ x, f x ≤ C) (hg : Tend
4140

4241
theorem tendsto_atTop_add_right_of_le' (C : β) (hf : Tendsto f l atTop) (hg : ∀ᶠ x in l, C ≤ g x) :
4342
Tendsto (fun x => f x + g x) l atTop :=
44-
@tendsto_atTop_of_add_bdd_above_right' _ _ _ l (fun x => f x + g x) (fun x => -g x) (-C)
45-
(by simp [hg]) (by simp [hf])
43+
.atTop_of_add_isBoundedUnder_le (g := -g) ⟨-C, by simpa⟩ (by simpa)
4644

4745
theorem tendsto_atBot_add_right_of_ge' (C : β) (hf : Tendsto f l atBot) (hg : ∀ᶠ x in l, g x ≤ C) :
4846
Tendsto (fun x => f x + g x) l atBot :=

0 commit comments

Comments
 (0)