Skip to content

Commit 0a57be7

Browse files
YaelDilliesurkud
andcommitted
chore: rename RestrictGenTopology to Topology.IsCoherentWith (#18397)
Rename `Topology.RestrictGenTopology` to `Topology.IsCoherentWith` since * the `Topology` part is understood * the name should be prefixed with `Is` to show it's Prop-valued * "coherent topology" is the informal name for this notion: https://en.wikipedia.org/wiki/Coherent_topology Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>
1 parent 342f271 commit 0a57be7

File tree

8 files changed

+35
-32
lines changed

8 files changed

+35
-32
lines changed

Mathlib.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5846,6 +5846,7 @@ import Mathlib.Topology.Clopen
58465846
import Mathlib.Topology.ClopenBox
58475847
import Mathlib.Topology.Closure
58485848
import Mathlib.Topology.ClusterPt
5849+
import Mathlib.Topology.Coherent
58495850
import Mathlib.Topology.CompactOpen
58505851
import Mathlib.Topology.Compactification.OnePoint
58515852
import Mathlib.Topology.Compactification.OnePointEquiv
@@ -6091,7 +6092,6 @@ import Mathlib.Topology.Perfect
60916092
import Mathlib.Topology.Piecewise
60926093
import Mathlib.Topology.PreorderRestrict
60936094
import Mathlib.Topology.QuasiSeparated
6094-
import Mathlib.Topology.RestrictGen
60956095
import Mathlib.Topology.Semicontinuous
60966096
import Mathlib.Topology.SeparatedMap
60976097
import Mathlib.Topology.Separation.Basic

Mathlib/Topology/Algebra/Module/Alternating/Topology.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -89,7 +89,7 @@ section CompleteSpace
8989
variable [ContinuousSMul 𝕜 E] [ContinuousConstSMul 𝕜 F] [CompleteSpace F]
9090

9191
open UniformOnFun in
92-
theorem completeSpace (h : RestrictGenTopology {s : Set (ι → E) | IsVonNBounded 𝕜 s}) :
92+
theorem completeSpace (h : IsCoherentWith {s : Set (ι → E) | IsVonNBounded 𝕜 s}) :
9393
CompleteSpace (E [⋀^ι]→L[𝕜] F) := by
9494
wlog hF : T2Space F generalizing F
9595
· rw [(isUniformInducing_postcomp (SeparationQuotient.mkCLM _ _)

Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ section CompleteSpace
120120
variable [∀ i, ContinuousSMul 𝕜 (E i)] [ContinuousConstSMul 𝕜 F] [CompleteSpace F]
121121

122122
open UniformOnFun in
123-
theorem completeSpace (h : RestrictGenTopology {s : Set (Π i, E i) | IsVonNBounded 𝕜 s}) :
123+
theorem completeSpace (h : IsCoherentWith {s : Set (Π i, E i) | IsVonNBounded 𝕜 s}) :
124124
CompleteSpace (ContinuousMultilinearMap 𝕜 E F) := by
125125
classical
126126
wlog hF : T2Space F generalizing F

Mathlib/Topology/Algebra/Module/StrongTopology.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -301,7 +301,7 @@ theorem isUniformInducing_postcomp
301301
exact (UniformOnFun.postcomp_isUniformInducing hg).comp (isUniformInducing_coeFn _ _ _)
302302

303303
theorem completeSpace [UniformSpace F] [IsUniformAddGroup F] [ContinuousSMul 𝕜₂ F] [CompleteSpace F]
304-
{𝔖 : Set (Set E)} (h𝔖 : RestrictGenTopology 𝔖) (h𝔖U : ⋃₀ 𝔖 = univ) :
304+
{𝔖 : Set (Set E)} (h𝔖 : IsCoherentWith 𝔖) (h𝔖U : ⋃₀ 𝔖 = univ) :
305305
CompleteSpace (UniformConvergenceCLM σ F 𝔖) := by
306306
wlog hF : T2Space F generalizing F
307307
· rw [(isUniformInducing_postcomp σ (SeparationQuotient.mkCLM 𝕜₂ F)
@@ -452,7 +452,7 @@ theorem isVonNBounded_iff {R : Type*} [NormedDivisionRing R]
452452
UniformConvergenceCLM.isVonNBounded_iff
453453

454454
theorem completeSpace [UniformSpace F] [IsUniformAddGroup F] [ContinuousSMul 𝕜₂ F] [CompleteSpace F]
455-
[ContinuousSMul 𝕜₁ E] (h : RestrictGenTopology {s : Set E | IsVonNBounded 𝕜₁ s}) :
455+
[ContinuousSMul 𝕜₁ E] (h : IsCoherentWith {s : Set E | IsVonNBounded 𝕜₁ s}) :
456456
CompleteSpace (E →SL[σ] F) :=
457457
UniformConvergenceCLM.completeSpace _ _ h isVonNBounded_covers
458458

Mathlib/Topology/RestrictGen.lean renamed to Mathlib/Topology/Coherent.lean

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -19,56 +19,56 @@ if either of the following equivalent conditions hold:
1919
provided that it is continuous on each `s ∈ S`.
2020
2121
We use the first condition as the definition
22-
(see `RestrictGenTopology` in `Mathlib/Topology/Defs/Induced.lean`),
22+
(see `IsCoherentWith` in `Mathlib/Topology/Defs/Induced.lean`),
2323
and provide the others as corollaries.
2424
2525
## Main results
2626
27-
- `RestrictGenTopology.of_seq`: if `X` is a sequential space
27+
- `IsCoherentWith.of_seq`: if `X` is a sequential space
2828
and `S` contains all sets of the form `insert x (Set.range u)`,
2929
where `u : ℕ → X` is a sequence that converges to `x`,
30-
then we have `RestrictGenTopology S`;
30+
then we have `IsCoherentWith S`;
3131
32-
- `RestrictGenTopology.isCompact_of_seq`: specialization of the previous lemma
32+
- `IsCoherentWith.isCompact_of_seq`: specialization of the previous lemma
3333
to the case `S = {K | IsCompact K}`.
3434
-/
3535

3636
open Filter Set
3737

3838
variable {X : Type*} [TopologicalSpace X] {S : Set (Set X)} {t : Set X} {x : X}
3939

40-
namespace Topology.RestrictGenTopology
40+
namespace Topology.IsCoherentWith
4141

42-
protected theorem isOpen_iff (hS : RestrictGenTopology S) :
42+
protected theorem isOpen_iff (hS : IsCoherentWith S) :
4343
IsOpen t ↔ ∀ s ∈ S, IsOpen ((↑) ⁻¹' t : Set s) :=
4444
fun ht _ _ ↦ ht.preimage continuous_subtype_val, hS.1 t⟩
4545

46-
protected theorem isClosed_iff (hS : RestrictGenTopology S) :
46+
protected theorem isClosed_iff (hS : IsCoherentWith S) :
4747
IsClosed t ↔ ∀ s ∈ S, IsClosed ((↑) ⁻¹' t : Set s) := by
4848
simp only [← isOpen_compl_iff, hS.isOpen_iff, preimage_compl]
4949

5050
protected theorem continuous_iff {Y : Type*} [TopologicalSpace Y] {f : X → Y}
51-
(hS : RestrictGenTopology S) :
51+
(hS : IsCoherentWith S) :
5252
Continuous f ↔ ∀ s ∈ S, ContinuousOn f s :=
5353
fun h _ _ ↦ h.continuousOn, fun h ↦ continuous_def.2 fun _u hu ↦ hS.isOpen_iff.2 fun s hs ↦
5454
hu.preimage <| (h s hs).restrict⟩
5555

5656
theorem of_continuous_prop (h : ∀ f : X → Prop, (∀ s ∈ S, ContinuousOn f s) → Continuous f) :
57-
RestrictGenTopology S where
57+
IsCoherentWith S where
5858
isOpen_of_forall_induced u hu := by
5959
simp only [continuousOn_iff_continuous_restrict, continuous_Prop] at *
6060
exact h _ hu
6161

6262
theorem of_isClosed (h : ∀ t : Set X, (∀ s ∈ S, IsClosed ((↑) ⁻¹' t : Set s)) → IsClosed t) :
63-
RestrictGenTopology S :=
63+
IsCoherentWith S :=
6464
fun _t ht ↦ isClosed_compl_iff.1 <| h _ fun s hs ↦ (ht s hs).isClosed_compl⟩
6565

66-
protected theorem enlarge {T} (hS : RestrictGenTopology S) (hT : ∀ s ∈ S, ∃ t ∈ T, s ⊆ t) :
67-
RestrictGenTopology T :=
66+
protected theorem enlarge {T} (hS : IsCoherentWith S) (hT : ∀ s ∈ S, ∃ t ∈ T, s ⊆ t) :
67+
IsCoherentWith T :=
6868
of_continuous_prop fun _f hf ↦ hS.continuous_iff.2 fun s hs ↦
6969
let ⟨t, htT, hst⟩ := hT s hs; (hf t htT).mono hst
7070

71-
protected theorem mono {T} (hS : RestrictGenTopology S) (hT : S ⊆ T) : RestrictGenTopology T :=
71+
protected theorem mono {T} (hS : IsCoherentWith S) (hT : S ⊆ T) : IsCoherentWith T :=
7272
hS.enlarge fun s hs ↦ ⟨s, hT hs, Subset.rfl⟩
7373

7474
/-- If `X` is a sequential space
@@ -77,7 +77,7 @@ where `u : ℕ → X` is a sequence and `x` is its limit,
7777
then topology on `X` is generated by its restrictions to the sets of `S`. -/
7878
lemma of_seq [SequentialSpace X]
7979
(h : ∀ ⦃u : ℕ → X⦄ ⦃x : X⦄, Tendsto u atTop (𝓝 x) → insert x (range u) ∈ S) :
80-
RestrictGenTopology S := by
80+
IsCoherentWith S := by
8181
refine of_isClosed fun t ht ↦ IsSeqClosed.isClosed fun u x hut hux ↦ ?_
8282
rcases isClosed_induced_iff.1 (ht _ (h hux)) with ⟨s, hsc, hst⟩
8383
rw [Subtype.preimage_val_eq_preimage_val_iff, Set.ext_iff] at hst
@@ -87,19 +87,19 @@ lemma of_seq [SequentialSpace X]
8787
simp_all
8888

8989
/-- A sequential space is compactly generated. -/
90-
lemma isCompact_of_seq [SequentialSpace X] : RestrictGenTopology {K : Set X | IsCompact K} :=
90+
lemma isCompact_of_seq [SequentialSpace X] : IsCoherentWith {K : Set X | IsCompact K} :=
9191
of_seq fun _u _x hux ↦ hux.isCompact_insert_range
9292

9393
/-- If each point of the space has a neighborhood from the family `S`,
9494
then the topology is generated by its restrictions to the sets of `S`. -/
95-
lemma of_nhds (h : ∀ x, ∃ s ∈ S, s ∈ 𝓝 x) : RestrictGenTopology S :=
95+
lemma of_nhds (h : ∀ x, ∃ s ∈ S, s ∈ 𝓝 x) : IsCoherentWith S :=
9696
of_continuous_prop fun _f hf ↦ continuous_iff_continuousAt.2 fun x ↦
9797
let ⟨s, hsS, hsx⟩ := h x
9898
(hf s hsS).continuousAt hsx
9999

100100
/-- A weakly locally compact space is compactly generated. -/
101101
lemma isCompact_of_weaklyLocallyCompact [WeaklyLocallyCompactSpace X] :
102-
RestrictGenTopology {K : Set X | IsCompact K} :=
102+
IsCoherentWith {K : Set X | IsCompact K} :=
103103
of_nhds exists_compact_mem_nhds
104104

105-
end Topology.RestrictGenTopology
105+
end Topology.IsCoherentWith

Mathlib/Topology/Defs/Induced.lean

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,9 +93,11 @@ if either of the following equivalent conditions hold:
9393
- for any topological space `Y`, a function `f : X → Y` is continuous
9494
provided that it is continuous on each `s ∈ S`.
9595
-/
96-
structure RestrictGenTopology (S : Set (Set X)) : Prop where
96+
structure IsCoherentWith (S : Set (Set X)) : Prop where
9797
isOpen_of_forall_induced (u : Set X) : (∀ s ∈ S, IsOpen ((↑) ⁻¹' u : Set s)) → IsOpen u
9898

99+
@[deprecated (since := "2025-04-08")] alias RestrictGenTopology := Topology.IsCoherentWith
100+
99101
/-- A function `f : X → Y` between topological spaces is inducing if the topology on `X` is induced
100102
by the topology on `Y` through `f`, meaning that a set `s : Set X` is open iff it is the preimage
101103
under `f` of some open set `t : Set Y`. -/

Mathlib/Topology/UniformSpace/CompactConvergence.lean

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@ so that the resulting instance uses the compact-open topology.
8585
-/
8686

8787
open Filter Set Topology UniformSpace
88-
open scoped Uniformity Topology UniformConvergence
88+
open scoped Uniformity UniformConvergence
8989

9090
universe u₁ u₂ u₃
9191
variable {α : Type u₁} {β : Type u₂} [TopologicalSpace α] [UniformSpace β]
@@ -375,20 +375,21 @@ continuous maps `C(α, β)` is complete (wrt the compact convergence uniformity)
375375
Sufficient conditions on `α` to satisfy this condition are (weak) local compactness (see
376376
`ContinuousMap.instCompleteSpaceOfWeaklyLocallyCompactSpace`) and sequential compactness (see
377377
`ContinuousMap.instCompleteSpaceOfSequentialSpace`). -/
378-
lemma completeSpace_of_restrictGenTopology (h : RestrictGenTopology {K : Set α | IsCompact K}) :
378+
lemma completeSpace_of_isCoherentWith (h : IsCoherentWith {K : Set α | IsCompact K}) :
379379
CompleteSpace C(α, β) := by
380380
rw [completeSpace_iff_isComplete_range
381381
isUniformEmbedding_toUniformOnFunIsCompact.isUniformInducing,
382382
range_toUniformOnFunIsCompact, ← completeSpace_coe_iff_isComplete]
383383
exact (UniformOnFun.isClosed_setOf_continuous h).completeSpace_coe
384384

385+
@[deprecated (since := "2025-04-08")]
386+
alias completeSpace_of_restrictGenTopology := completeSpace_of_isCoherentWith
387+
385388
instance instCompleteSpaceOfWeaklyLocallyCompactSpace [WeaklyLocallyCompactSpace α] :
386-
CompleteSpace C(α, β) :=
387-
completeSpace_of_restrictGenTopology RestrictGenTopology.isCompact_of_weaklyLocallyCompact
389+
CompleteSpace C(α, β) := completeSpace_of_isCoherentWith .isCompact_of_weaklyLocallyCompact
388390

389391
instance instCompleteSpaceOfSequentialSpace [SequentialSpace α] :
390-
CompleteSpace C(α, β) :=
391-
completeSpace_of_restrictGenTopology RestrictGenTopology.isCompact_of_seq
392+
CompleteSpace C(α, β) := completeSpace_of_isCoherentWith .isCompact_of_seq
392393

393394
end CompleteSpace
394395

Mathlib/Topology/UniformSpace/UniformConvergenceTopology.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ Authors: Anatole Dedecker
66
import Mathlib.Topology.UniformSpace.UniformConvergence
77
import Mathlib.Topology.UniformSpace.Pi
88
import Mathlib.Topology.UniformSpace.Equiv
9-
import Mathlib.Topology.RestrictGen
9+
import Mathlib.Topology.Coherent
1010

1111
/-!
1212
# Topology and uniform structure of uniform convergence
@@ -1059,7 +1059,7 @@ protected def uniformEquivPiComm : (α →ᵤ[𝔖] ((i : ι) → δ i)) ≃ᵤ
10591059
10601060
Then the set of continuous functions is closed
10611061
in the topology of uniform convergence on the sets of `𝔖`. -/
1062-
theorem isClosed_setOf_continuous [TopologicalSpace α] (h : RestrictGenTopology 𝔖) :
1062+
theorem isClosed_setOf_continuous [TopologicalSpace α] (h : IsCoherentWith 𝔖) :
10631063
IsClosed {f : α →ᵤ[𝔖] β | Continuous (toFun 𝔖 f)} := by
10641064
refine isClosed_iff_forall_filter.2 fun f u _ hu huf ↦ h.continuous_iff.2 fun s hs ↦ ?_
10651065
rw [← tendsto_id', UniformOnFun.tendsto_iff_tendstoUniformlyOn] at huf

0 commit comments

Comments
 (0)