|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Joël Riou. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Joël Riou |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module algebraic_topology.dold_kan.gamma_comp_n |
| 7 | +! leanprover-community/mathlib commit 5f68029a863bdf76029fa0f7a519e6163c14152e |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.AlgebraicTopology.DoldKan.FunctorGamma |
| 12 | +import Mathlib.CategoryTheory.Idempotents.HomologicalComplex |
| 13 | + |
| 14 | +/-! The counit isomorphism of the Dold-Kan equivalence |
| 15 | +
|
| 16 | +The purpose of this file is to construct natural isomorphisms |
| 17 | +`N₁Γ₀ : Γ₀ ⋙ N₁ ≅ toKaroubi (ChainComplex C ℕ)` |
| 18 | +and `N₂Γ₂ : Γ₂ ⋙ N₂ ≅ 𝟭 (Karoubi (ChainComplex C ℕ))`. |
| 19 | +
|
| 20 | +-/ |
| 21 | + |
| 22 | + |
| 23 | +noncomputable section |
| 24 | + |
| 25 | +open CategoryTheory CategoryTheory.Category CategoryTheory.Limits |
| 26 | + CategoryTheory.Idempotents Opposite SimplicialObject Simplicial |
| 27 | + |
| 28 | +namespace AlgebraicTopology |
| 29 | + |
| 30 | +namespace DoldKan |
| 31 | + |
| 32 | +variable {C : Type _} [Category C] [Preadditive C] [HasFiniteCoproducts C] |
| 33 | + |
| 34 | +/-- The isomorphism `(Γ₀.splitting K).nondegComplex ≅ K` for all `K : ChainComplex C ℕ`. -/ |
| 35 | +@[simps!] |
| 36 | +def Γ₀NondegComplexIso (K : ChainComplex C ℕ) : (Γ₀.splitting K).nondegComplex ≅ K := |
| 37 | + HomologicalComplex.Hom.isoOfComponents (fun n => Iso.refl _) |
| 38 | + (by |
| 39 | + rintro _ n (rfl : n + 1 = _) |
| 40 | + dsimp |
| 41 | + simp only [id_comp, comp_id, AlternatingFaceMapComplex.obj_d_eq, Preadditive.sum_comp, |
| 42 | + Preadditive.comp_sum] |
| 43 | + rw [Fintype.sum_eq_single (0 : Fin (n + 2))] |
| 44 | + · simp only [Fin.val_zero, pow_zero, one_zsmul] |
| 45 | + erw [Γ₀.Obj.mapMono_on_summand_id_assoc, Γ₀.Obj.Termwise.mapMono_δ₀, |
| 46 | + Splitting.ι_πSummand_eq_id, comp_id] |
| 47 | + · intro i hi |
| 48 | + dsimp |
| 49 | + simp only [Preadditive.zsmul_comp, Preadditive.comp_zsmul, assoc] |
| 50 | + erw [Γ₀.Obj.mapMono_on_summand_id_assoc, Γ₀.Obj.Termwise.mapMono_eq_zero, zero_comp, |
| 51 | + zsmul_zero] |
| 52 | + · intro h |
| 53 | + replace h := congr_arg SimplexCategory.len h |
| 54 | + change n + 1 = n at h |
| 55 | + linarith |
| 56 | + · simpa only [Isδ₀.iff] using hi) |
| 57 | +#align algebraic_topology.dold_kan.Γ₀_nondeg_complex_iso AlgebraicTopology.DoldKan.Γ₀NondegComplexIso |
| 58 | + |
| 59 | +/-- The natural isomorphism `(Γ₀.splitting K).nondegComplex ≅ K` for `K : ChainComplex C ℕ`. -/ |
| 60 | +def Γ₀'CompNondegComplexFunctor : Γ₀' ⋙ Split.nondegComplexFunctor ≅ 𝟭 (ChainComplex C ℕ) := |
| 61 | + NatIso.ofComponents Γ₀NondegComplexIso (by aesop_cat) |
| 62 | +#align algebraic_topology.dold_kan.Γ₀'_comp_nondeg_complex_functor AlgebraicTopology.DoldKan.Γ₀'CompNondegComplexFunctor |
| 63 | + |
| 64 | +/-- The natural isomorphism `Γ₀ ⋙ N₁ ≅ toKaroubi (ChainComplex C ℕ)`. -/ |
| 65 | +def N₁Γ₀ : Γ₀ ⋙ N₁ ≅ toKaroubi (ChainComplex C ℕ) := |
| 66 | + calc |
| 67 | + Γ₀ ⋙ N₁ ≅ Γ₀' ⋙ Split.forget C ⋙ N₁ := Functor.associator _ _ _ |
| 68 | + _ ≅ Γ₀' ⋙ Split.nondegComplexFunctor ⋙ toKaroubi _ := |
| 69 | + (isoWhiskerLeft Γ₀' Split.toKaroubiNondegComplexFunctorIsoN₁.symm) |
| 70 | + _ ≅ (Γ₀' ⋙ Split.nondegComplexFunctor) ⋙ toKaroubi _ := (Functor.associator _ _ _).symm |
| 71 | + _ ≅ 𝟭 _ ⋙ toKaroubi (ChainComplex C ℕ) := (isoWhiskerRight Γ₀'CompNondegComplexFunctor _) |
| 72 | + _ ≅ toKaroubi (ChainComplex C ℕ) := Functor.leftUnitor _ |
| 73 | +set_option linter.uppercaseLean3 false in |
| 74 | +#align algebraic_topology.dold_kan.N₁Γ₀ AlgebraicTopology.DoldKan.N₁Γ₀ |
| 75 | + |
| 76 | +theorem N₁Γ₀_app (K : ChainComplex C ℕ) : |
| 77 | + N₁Γ₀.app K = (Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.symm ≪≫ |
| 78 | + (toKaroubi _).mapIso (Γ₀NondegComplexIso K) := by |
| 79 | + ext1 |
| 80 | + dsimp [N₁Γ₀] |
| 81 | + erw [id_comp, comp_id, comp_id] |
| 82 | + rfl |
| 83 | +set_option linter.uppercaseLean3 false in |
| 84 | +#align algebraic_topology.dold_kan.N₁Γ₀_app AlgebraicTopology.DoldKan.N₁Γ₀_app |
| 85 | + |
| 86 | +theorem N₁Γ₀_hom_app (K : ChainComplex C ℕ) : |
| 87 | + N₁Γ₀.hom.app K = (Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.inv ≫ |
| 88 | + (toKaroubi _).map (Γ₀NondegComplexIso K).hom := by |
| 89 | + change (N₁Γ₀.app K).hom = _ |
| 90 | + simp only [N₁Γ₀_app] |
| 91 | + rfl |
| 92 | +set_option linter.uppercaseLean3 false in |
| 93 | +#align algebraic_topology.dold_kan.N₁Γ₀_hom_app AlgebraicTopology.DoldKan.N₁Γ₀_hom_app |
| 94 | + |
| 95 | +theorem N₁Γ₀_inv_app (K : ChainComplex C ℕ) : |
| 96 | + N₁Γ₀.inv.app K = (toKaroubi _).map (Γ₀NondegComplexIso K).inv ≫ |
| 97 | + (Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.hom := by |
| 98 | + change (N₁Γ₀.app K).inv = _ |
| 99 | + simp only [N₁Γ₀_app] |
| 100 | + rfl |
| 101 | +set_option linter.uppercaseLean3 false in |
| 102 | +#align algebraic_topology.dold_kan.N₁Γ₀_inv_app AlgebraicTopology.DoldKan.N₁Γ₀_inv_app |
| 103 | + |
| 104 | +@[simp] |
| 105 | +theorem N₁Γ₀_hom_app_f_f (K : ChainComplex C ℕ) (n : ℕ) : |
| 106 | + (N₁Γ₀.hom.app K).f.f n = (Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.inv.f.f n := by |
| 107 | + rw [N₁Γ₀_hom_app] |
| 108 | + apply comp_id |
| 109 | +set_option linter.uppercaseLean3 false in |
| 110 | +#align algebraic_topology.dold_kan.N₁Γ₀_hom_app_f_f AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f |
| 111 | + |
| 112 | +@[simp] |
| 113 | +theorem N₁Γ₀_inv_app_f_f (K : ChainComplex C ℕ) (n : ℕ) : |
| 114 | + (N₁Γ₀.inv.app K).f.f n = (Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.hom.f.f n := by |
| 115 | + rw [N₁Γ₀_inv_app] |
| 116 | + apply id_comp |
| 117 | +set_option linter.uppercaseLean3 false in |
| 118 | +#align algebraic_topology.dold_kan.N₁Γ₀_inv_app_f_f AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f |
| 119 | + |
| 120 | +-- Porting note: added to speed up elaboration |
| 121 | +attribute [irreducible] N₁Γ₀ |
| 122 | + |
| 123 | +theorem N₂Γ₂_toKaroubi : toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ = Γ₀ ⋙ N₁ := by |
| 124 | + have h := Functor.congr_obj (functorExtension₂_comp_whiskeringLeft_toKaroubi |
| 125 | + (ChainComplex C ℕ) (SimplicialObject C)) Γ₀ |
| 126 | + have h' := Functor.congr_obj (functorExtension₁_comp_whiskeringLeft_toKaroubi |
| 127 | + (SimplicialObject C) (ChainComplex C ℕ)) N₁ |
| 128 | + dsimp [N₂, Γ₂, functorExtension₁] at h h' ⊢ |
| 129 | + rw [← Functor.assoc, h, Functor.assoc, h'] |
| 130 | +set_option linter.uppercaseLean3 false in |
| 131 | +#align algebraic_topology.dold_kan.N₂Γ₂_to_karoubi AlgebraicTopology.DoldKan.N₂Γ₂_toKaroubi |
| 132 | + |
| 133 | +/-- Compatibility isomorphism between `toKaroubi _ ⋙ Γ₂ ⋙ N₂` and `Γ₀ ⋙ N₁` which |
| 134 | +are functors `ChainComplex C ℕ ⥤ Karoubi (ChainComplex C ℕ)`. -/ |
| 135 | +@[simps!] |
| 136 | +def N₂Γ₂ToKaroubiIso : toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ ≅ Γ₀ ⋙ N₁ := |
| 137 | + eqToIso N₂Γ₂_toKaroubi |
| 138 | +set_option linter.uppercaseLean3 false in |
| 139 | +#align algebraic_topology.dold_kan.N₂Γ₂_to_karoubi_iso AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso |
| 140 | + |
| 141 | +-- Porting note: added to speed up elaboration |
| 142 | +attribute [irreducible] N₂Γ₂ToKaroubiIso |
| 143 | + |
| 144 | +/-- The counit isomorphism of the Dold-Kan equivalence for additive categories. -/ |
| 145 | +def N₂Γ₂ : Γ₂ ⋙ N₂ ≅ 𝟭 (Karoubi (ChainComplex C ℕ)) := |
| 146 | + ((whiskeringLeft _ _ _).obj (toKaroubi (ChainComplex C ℕ))).preimageIso |
| 147 | + (N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀) |
| 148 | +set_option linter.uppercaseLean3 false in |
| 149 | +#align algebraic_topology.dold_kan.N₂Γ₂ AlgebraicTopology.DoldKan.N₂Γ₂ |
| 150 | + |
| 151 | +@[simp] |
| 152 | +theorem N₂Γ₂_inv_app_f_f (X : Karoubi (ChainComplex C ℕ)) (n : ℕ) : |
| 153 | + (N₂Γ₂.inv.app X).f.f n = |
| 154 | + X.p.f n ≫ (Γ₀.splitting X.X).ιSummand (Splitting.IndexSet.id (op [n])) := by |
| 155 | + simp only [N₂Γ₂, Functor.preimageIso, Iso.trans, |
| 156 | + whiskeringLeft_obj_preimage_app, N₂Γ₂ToKaroubiIso_inv, assoc, |
| 157 | + Functor.id_map, NatTrans.comp_app, eqToHom_app, Karoubi.comp_f, |
| 158 | + Karoubi.eqToHom_f, Karoubi.decompId_p_f, HomologicalComplex.comp_f, |
| 159 | + N₁Γ₀_inv_app_f_f, Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, |
| 160 | + Functor.comp_map, Functor.comp_obj, Karoubi.decompId_i_f, |
| 161 | + eqToHom_refl, comp_id, N₂_map_f_f, Γ₂_map_f_app, N₁_obj_p, |
| 162 | + PInfty_on_Γ₀_splitting_summand_eq_self_assoc, toKaroubi_obj_X, |
| 163 | + Splitting.ι_desc, Splitting.IndexSet.id_fst, SimplexCategory.len_mk, unop_op, |
| 164 | + Karoubi.HomologicalComplex.p_idem_assoc] |
| 165 | +set_option linter.uppercaseLean3 false in |
| 166 | +#align algebraic_topology.dold_kan.N₂Γ₂_inv_app_f_f AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f |
| 167 | + |
| 168 | +-- porting note: added to ease the proof of `N₂Γ₂_compatible_with_N₁Γ₀` |
| 169 | +lemma whiskerLeft_toKaroubi_N₂Γ₂_hom : |
| 170 | + whiskerLeft (toKaroubi (ChainComplex C ℕ)) N₂Γ₂.hom = N₂Γ₂ToKaroubiIso.hom ≫ N₁Γ₀.hom := by |
| 171 | + let e : _ ≅ toKaroubi (ChainComplex C ℕ) ⋙ 𝟭 _ := N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀ |
| 172 | + have h := ((whiskeringLeft _ _ (Karoubi (ChainComplex C ℕ))).obj |
| 173 | + (toKaroubi (ChainComplex C ℕ))).image_preimage e.hom |
| 174 | + dsimp only [whiskeringLeft, N₂Γ₂, Functor.preimageIso] at h ⊢ |
| 175 | + exact h |
| 176 | + |
| 177 | +-- Porting note: added to speed up elaboration |
| 178 | +attribute [irreducible] N₂Γ₂ |
| 179 | + |
| 180 | +theorem N₂Γ₂_compatible_with_N₁Γ₀ (K : ChainComplex C ℕ) : |
| 181 | + N₂Γ₂.hom.app ((toKaroubi _).obj K) = N₂Γ₂ToKaroubiIso.hom.app K ≫ N₁Γ₀.hom.app K := |
| 182 | + congr_app whiskerLeft_toKaroubi_N₂Γ₂_hom K |
| 183 | +set_option linter.uppercaseLean3 false in |
| 184 | +#align algebraic_topology.dold_kan.N₂Γ₂_compatible_with_N₁Γ₀ AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀ |
| 185 | + |
| 186 | +end DoldKan |
| 187 | + |
| 188 | +end AlgebraicTopology |
0 commit comments