Skip to content

Commit 0e7ba01

Browse files
committed
chore(AlgebraicGeometry/AffineScheme): rename isAffine_of_isIso to IsAffine.of_isIso (#23475)
This is useful for anonymous dot notation. From Toric
1 parent 363660f commit 0e7ba01

File tree

9 files changed

+25
-23
lines changed

9 files changed

+25
-23
lines changed

Mathlib/AlgebraicGeometry/AffineScheme.lean

Lines changed: 11 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -113,9 +113,11 @@ instance (R : CommRingCatᵒᵖ) : IsAffine (Scheme.Spec.obj R) :=
113113
instance isAffine_Spec (R : CommRingCat) : IsAffine (Spec R) :=
114114
AlgebraicGeometry.isAffine_affineScheme ⟨_, Scheme.Spec.obj_mem_essImage (op R)⟩
115115

116-
theorem isAffine_of_isIso {X Y : Scheme} (f : X ⟶ Y) [IsIso f] [h : IsAffine Y] : IsAffine X := by
116+
theorem IsAffine.of_isIso {X Y : Scheme} (f : X ⟶ Y) [IsIso f] [h : IsAffine Y] : IsAffine X := by
117117
rw [← mem_Spec_essImage] at h ⊢; exact Functor.essImage.ofIso (asIso f).symm h
118118

119+
@[deprecated (since := "2025-03-31")] alias isAffine_of_isIso := IsAffine.of_isIso
120+
119121
/-- If `f : X ⟶ Y` is a morphism between affine schemes, the corresponding arrow is isomorphic
120122
to the arrow of the morphism on prime spectra induced by the map on global sections. -/
121123
noncomputable
@@ -221,7 +223,7 @@ instance {Y : Scheme.{u}} (U : Y.affineOpens) : IsAffine U :=
221223

222224
theorem isAffineOpen_opensRange {X Y : Scheme} [IsAffine X] (f : X ⟶ Y)
223225
[H : IsOpenImmersion f] : IsAffineOpen (Scheme.Hom.opensRange f) := by
224-
refine isAffine_of_isIso (IsOpenImmersion.isoOfRangeEq f (Y.ofRestrict _) ?_).inv
226+
refine .of_isIso (IsOpenImmersion.isoOfRangeEq f (Y.ofRestrict _) ?_).inv
225227
exact Subtype.range_val.symm
226228

227229
theorem isAffineOpen_top (X : Scheme) [IsAffine X] : IsAffineOpen (⊤ : X.Opens) := by
@@ -444,19 +446,19 @@ theorem image_of_isOpenImmersion (f : X ⟶ Y) [H : IsOpenImmersion f] :
444446
theorem preimage_of_isIso {U : Y.Opens} (hU : IsAffineOpen U) (f : X ⟶ Y) [IsIso f] :
445447
IsAffineOpen (f ⁻¹ᵁ U) :=
446448
haveI : IsAffine _ := hU
447-
isAffine_of_isIso (f ∣_ U)
449+
.of_isIso (f ∣_ U)
448450

449451
theorem _root_.AlgebraicGeometry.Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion
450452
(f : AlgebraicGeometry.Scheme.Hom X Y) [H : IsOpenImmersion f] {U : X.Opens} :
451-
IsAffineOpen (f ''ᵁ U) ↔ IsAffineOpen U := by
452-
refine ⟨fun hU => @isAffine_of_isIso _ _
453-
(IsOpenImmersion.isoOfRangeEq (X.ofRestrict U.isOpenEmbedding ≫ f) (Y.ofRestrict _) ?_).hom
454-
?_ hU, fun hU => hU.image_of_isOpenImmersion f⟩
455-
· rw [Scheme.comp_base, TopCat.coe_comp, Set.range_comp]
453+
IsAffineOpen (f ''ᵁ U) ↔ IsAffineOpen U where
454+
mp hU := by
455+
refine .of_isIso (IsOpenImmersion.isoOfRangeEq (X.ofRestrict U.isOpenEmbedding ≫ f)
456+
(Y.ofRestrict _) ?_).hom (h := hU)
457+
rw [Scheme.comp_base, TopCat.coe_comp, Set.range_comp]
456458
dsimp [Opens.coe_inclusion', Scheme.restrict]
457459
rw [Subtype.range_coe, Subtype.range_coe]
458460
rfl
459-
· infer_instance
461+
mpr hU := hU.image_of_isOpenImmersion f
460462

461463
/-- The affine open sets of an open subscheme corresponds to
462464
the affine open sets containing in the image. -/

Mathlib/AlgebraicGeometry/AffineSpace.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -233,7 +233,7 @@ lemma isoOfIsAffine_inv_over [IsAffine S] :
233233
(isoOfIsAffine n S).inv ≫ 𝔸(n; S) ↘ S = Spec.map (CommRingCat.ofHom C) ≫ S.isoSpec.inv :=
234234
pullback.lift_fst _ _ _
235235

236-
instance [IsAffine S] : IsAffine 𝔸(n; S) := isAffine_of_isIso (isoOfIsAffine n S).hom
236+
instance [IsAffine S] : IsAffine 𝔸(n; S) := .of_isIso (isoOfIsAffine n S).hom
237237

238238
variable (n) in
239239
/-- The affine space over an affine base is isomorphic to the spectrum of the polynomial ring. -/

Mathlib/AlgebraicGeometry/Limits.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ instance : HasTerminal Scheme :=
4949
hasTerminal_of_hasTerminal_of_preservesLimit Scheme.Spec
5050

5151
instance : IsAffine (⊤_ Scheme.{u}) :=
52-
isAffine_of_isIso (PreservesTerminal.iso Scheme.Spec).inv
52+
.of_isIso (PreservesTerminal.iso Scheme.Spec).inv
5353

5454
instance : HasFiniteLimits Scheme :=
5555
hasFiniteLimits_of_hasTerminal_and_pullbacks
@@ -116,7 +116,7 @@ noncomputable def specPunitIsInitial : IsInitial (Spec (.of PUnit.{u+1})) :=
116116
emptyIsInitial.ofIso (asIso <| emptyIsInitial.to _)
117117

118118
instance (priority := 100) isAffine_of_isEmpty {X : Scheme} [IsEmpty X] : IsAffine X :=
119-
isAffine_of_isIso (inv (emptyIsInitial.to X) ≫ emptyIsInitial.to (Spec (.of PUnit)))
119+
.of_isIso (inv (emptyIsInitial.to X) ≫ emptyIsInitial.to (Spec (.of PUnit)))
120120

121121
instance : HasInitial Scheme.{u} :=
122122
hasInitial_of_unique ∅
@@ -627,10 +627,10 @@ instance [Finite ι] (R : ι → CommRingCat.{u}) : IsIso (sigmaSpec R) := by
627627
infer_instance
628628

629629
instance [Finite ι] [∀ i, IsAffine (f i)] : IsAffine (∐ f) :=
630-
isAffine_of_isIso ((Sigma.mapIso (fun i ↦ (f i).isoSpec)).hom ≫ sigmaSpec _)
630+
.of_isIso ((Sigma.mapIso (fun i ↦ (f i).isoSpec)).hom ≫ sigmaSpec _)
631631

632632
instance [IsAffine X] [IsAffine Y] : IsAffine (X ⨿ Y) :=
633-
isAffine_of_isIso ((coprod.mapIso X.isoSpec Y.isoSpec).hom ≫ coprodSpec _ _)
633+
.of_isIso ((coprod.mapIso X.isoSpec Y.isoSpec).hom ≫ coprodSpec _ _)
634634

635635
end Coproduct
636636

Mathlib/AlgebraicGeometry/Morphisms/Affine.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ instance : HasAffineProperty @IsAffineHom fun X _ _ _ ↦ IsAffine X where
149149
· apply AffineTargetMorphismProperty.respectsIso_mk
150150
· rintro X Y Z e _ _ H
151151
have : IsAffine _ := H
152-
exact isAffine_of_isIso e.hom
152+
exact .of_isIso e.hom
153153
· exact fun _ _ _ ↦ id
154154
· intro X Y _ f r H
155155
have : IsAffine X := H

Mathlib/AlgebraicGeometry/Morphisms/AffineAnd.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -51,9 +51,9 @@ lemma affineAnd_respectsIso (hP : RingHom.RespectsIso Q) :
5151
(affineAnd Q).toProperty.RespectsIso := by
5252
refine RespectsIso.mk _ ?_ ?_
5353
· intro X Y Z e f ⟨hZ, ⟨hY, hf⟩⟩
54-
simpa [hP.cancel_right_isIso, isAffine_of_isIso e.hom]
54+
simpa [hP.cancel_right_isIso, IsAffine.of_isIso e.hom]
5555
· intro X Y Z e f ⟨hZ, hf⟩
56-
simpa [AffineTargetMorphismProperty.toProperty, isAffine_of_isIso e.inv, hP.cancel_left_isIso]
56+
simpa [AffineTargetMorphismProperty.toProperty, IsAffine.of_isIso e.inv, hP.cancel_left_isIso]
5757

5858
/-- `affineAnd P` is local if `P` is local on the (algebraic) source. -/
5959
lemma affineAnd_isLocal (hPi : RingHom.RespectsIso Q) (hQl : RingHom.LocalizationAwayPreserves Q)

Mathlib/AlgebraicGeometry/Morphisms/Basic.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -362,18 +362,18 @@ theorem arrow_mk_iso_iff
362362
(P : AffineTargetMorphismProperty) [P.toProperty.RespectsIso]
363363
{X Y X' Y' : Scheme} {f : X ⟶ Y} {f' : X' ⟶ Y'}
364364
(e : Arrow.mk f ≅ Arrow.mk f') {h : IsAffine Y} :
365-
letI : IsAffine Y' := isAffine_of_isIso (Y := Y) e.inv.right
365+
letI : IsAffine Y' := .of_isIso (Y := Y) e.inv.right
366366
P f ↔ P f' := by
367367
rw [← P.toProperty_apply, ← P.toProperty_apply, P.toProperty.arrow_mk_iso_iff e]
368368

369369
theorem respectsIso_mk {P : AffineTargetMorphismProperty}
370370
(h₁ : ∀ {X Y Z} (e : X ≅ Y) (f : Y ⟶ Z) [IsAffine Z], P f → P (e.hom ≫ f))
371371
(h₂ : ∀ {X Y Z} (e : Y ≅ Z) (f : X ⟶ Y) [IsAffine Y],
372-
P f → @P _ _ (f ≫ e.hom) (isAffine_of_isIso e.inv)) :
372+
P f → @P _ _ (f ≫ e.hom) (.of_isIso e.inv)) :
373373
P.toProperty.RespectsIso := by
374374
apply MorphismProperty.RespectsIso.mk
375375
· rintro X Y Z e f ⟨a, h⟩; exact ⟨a, h₁ e f h⟩
376-
· rintro X Y Z e f ⟨a, h⟩; exact ⟨isAffine_of_isIso e.inv, h₂ e f h⟩
376+
· rintro X Y Z e f ⟨a, h⟩; exact ⟨.of_isIso e.inv, h₂ e f h⟩
377377

378378
instance respectsIso_of
379379
(P : MorphismProperty Scheme) [P.RespectsIso] :

Mathlib/AlgebraicGeometry/Morphisms/ClosedImmersion.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -247,7 +247,7 @@ theorem isAffine_surjective_of_isAffine [IsClosedImmersion f] :
247247
haveI := IsClosedImmersion.of_comp_isClosedImmersion (affineTargetImageFactorization f)
248248
(affineTargetImageInclusion f)
249249
haveI := isIso_of_injective_of_isAffine (affineTargetImageFactorization_app_injective f)
250-
exact ⟨isAffine_of_isIso (affineTargetImageFactorization f),
250+
exact ⟨.of_isIso (affineTargetImageFactorization f),
251251
(ConcreteCategory.bijective_of_isIso
252252
((affineTargetImageFactorization f).appTop)).surjective.comp <|
253253
affineTargetImageInclusion_app_surjective f⟩

Mathlib/AlgebraicGeometry/Morphisms/IsIso.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ instance : HasAffineProperty (isomorphisms Scheme) fun X _ f _ ↦ IsAffine X
4040
convert HasAffineProperty.of_isLocalAtTarget (isomorphisms Scheme) with X Y f hY
4141
exact ⟨fun ⟨_, _⟩ ↦ (arrow_mk_iso_iff (isomorphisms _) (arrowIsoSpecΓOfIsAffine f)).mpr
4242
(inferInstanceAs (IsIso (Spec.map (f.appTop)))),
43-
fun (_ : IsIso f) ↦ ⟨isAffine_of_isIso f, inferInstance⟩⟩
43+
fun (_ : IsIso f) ↦ ⟨.of_isIso f, inferInstance⟩⟩
4444

4545
instance : IsLocalAtTarget (monomorphisms Scheme) :=
4646
diagonal_isomorphisms (C := Scheme).symm ▸ inferInstance

Mathlib/AlgebraicGeometry/Pullbacks.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -451,7 +451,7 @@ instance : HasPullbacks Scheme :=
451451
instance isAffine_of_isAffine_isAffine_isAffine {X Y Z : Scheme}
452452
(f : X ⟶ Z) (g : Y ⟶ Z) [IsAffine X] [IsAffine Y] [IsAffine Z] :
453453
IsAffine (pullback f g) :=
454-
isAffine_of_isIso
454+
.of_isIso
455455
(pullback.map f g (Spec.map (Γ.map f.op)) (Spec.map (Γ.map g.op))
456456
X.toSpecΓ Y.toSpecΓ Z.toSpecΓ
457457
(Scheme.toSpecΓ_naturality f) (Scheme.toSpecΓ_naturality g) ≫

0 commit comments

Comments
 (0)