Skip to content

Commit 0ed4b45

Browse files
committed
chore(DFinsupp/Order): drop a Decidable assumption (#10870)
1 parent 0b05572 commit 0ed4b45

File tree

1 file changed

+9
-3
lines changed

1 file changed

+9
-3
lines changed

Mathlib/Data/DFinsupp/Order.lean

Lines changed: 9 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -210,7 +210,11 @@ theorem add_eq_zero_iff (f g : Π₀ i, α i) : f + g = 0 ↔ f = 0 ∧ g = 0 :=
210210

211211
section LE
212212

213-
variable [DecidableEq ι] [∀ (i) (x : α i), Decidable (x ≠ 0)] {f g : Π₀ i, α i} {s : Finset ι}
213+
variable [DecidableEq ι]
214+
215+
section
216+
217+
variable [∀ (i) (x : α i), Decidable (x ≠ 0)] {f g : Π₀ i, α i} {s : Finset ι}
214218

215219
theorem le_iff' (hf : f.support ⊆ s) : f ≤ g ↔ ∀ i ∈ s, f i ≤ g i :=
216220
fun h s _ ↦ h s, fun h s ↦
@@ -234,9 +238,11 @@ instance decidableLE [∀ i, DecidableRel (@LE.le (α i) _)] : DecidableRel (@LE
234238

235239
variable {α}
236240

241+
end
242+
237243
@[simp]
238-
theorem single_le_iff {i : ι} {a : α i} : single i a ≤ f ↔ a ≤ f i :=
239-
(le_iff' support_single_subset).trans <| by simp
244+
theorem single_le_iff {f : Π₀ i, α i} {i : ι} {a : α i} : single i a ≤ f ↔ a ≤ f i := by
245+
classical exact (le_iff' support_single_subset).trans <| by simp
240246
#align dfinsupp.single_le_iff DFinsupp.single_le_iff
241247

242248
end LE

0 commit comments

Comments
 (0)