Skip to content

Commit 0edea25

Browse files
committed
chore(whitespace): some more changes in whitespace (#22840)
Found by #22760.
1 parent 8ab42a6 commit 0edea25

File tree

12 files changed

+16
-15
lines changed

12 files changed

+16
-15
lines changed

Mathlib/Algebra/Central/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ universe u v
2323

2424
namespace Algebra.IsCentral
2525

26-
variable (K : Type u) [CommSemiring K] (D D': Type v) [Semiring D] [Algebra K D]
26+
variable (K : Type u) [CommSemiring K] (D D' : Type v) [Semiring D] [Algebra K D]
2727
[h : IsCentral K D] [Semiring D'] [Algebra K D']
2828

2929
@[simp]

Mathlib/Algebra/Group/Action/Equidecomp.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ We take this as our definition as it is easier to work with. It is implemented a
5050
5151
-/
5252

53-
variable {X G : Type*} {A B C: Set X}
53+
variable {X G : Type*} {A B C : Set X}
5454

5555
open Function Set Pointwise PartialEquiv
5656

Mathlib/Algebra/Group/Submonoid/Units.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -305,7 +305,7 @@ units of `M`. -/
305305
noncomputable def ofUnitsTopEquiv : (⊤ : Subgroup Mˣ).ofUnits ≃* Mˣ :=
306306
(⊤ : Subgroup Mˣ).ofUnitsEquivType.trans topEquiv
307307

308-
variable {G : Type*} [Group G]
308+
variable {G : Type*} [Group G]
309309

310310
@[to_additive]
311311
lemma mem_units_iff_val_mem (H : Subgroup G) (x : Gˣ) : x ∈ H.units ↔ (x : G) ∈ H := by

Mathlib/Algebra/Module/LinearMap/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ theorem _root_.DomMulAct.mk_smul_linearMap_apply (a : S') (f : M →ₛₗ[σ₁
5050
(DomMulAct.mk a • f) x = f (a • x) :=
5151
rfl
5252

53-
theorem _root_.DomMulAct.coe_smul_linearMap (a : S'ᵈᵐᵃ) (f : M →ₛₗ[σ₁₂] M') :
53+
theorem _root_.DomMulAct.coe_smul_linearMap (a : S'ᵈᵐᵃ) (f : M →ₛₗ[σ₁₂] M') :
5454
(a • f : M →ₛₗ[σ₁₂] M') = a • (f : M → M') :=
5555
rfl
5656

Mathlib/Algebra/Quaternion.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ def equivTuple {R : Type*} (c₁ c₂ c₃: R) : ℍ[R,c₁,c₂,c₃] ≃ (Fin
9292
right_inv f := by ext ⟨_, _ | _ | _ | _ | _ | ⟨⟩⟩ <;> rfl
9393

9494
@[simp]
95-
theorem equivTuple_apply {R : Type*} (c₁ c₂ c₃: R) (x : ℍ[R,c₁,c₂,c₃]) :
95+
theorem equivTuple_apply {R : Type*} (c₁ c₂ c₃ : R) (x : ℍ[R,c₁,c₂,c₃]) :
9696
equivTuple c₁ c₂ c₃ x = ![x.re, x.imI, x.imJ, x.imK] :=
9797
rfl
9898

Mathlib/CategoryTheory/Limits/Final.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -437,7 +437,7 @@ variable {C : Type v} [Category.{v} C] {D : Type u₁} [Category.{v} D] (F : C
437437

438438
namespace Final
439439

440-
theorem zigzag_of_eqvGen_quot_rel {F : C ⥤ D} {d : D} {f₁ f₂ : ΣX, d ⟶ F.obj X}
440+
theorem zigzag_of_eqvGen_quot_rel {F : C ⥤ D} {d : D} {f₁ f₂ : Σ X, d ⟶ F.obj X}
441441
(t : Relation.EqvGen (Types.Quot.Rel.{v, v} (F ⋙ coyoneda.obj (op d))) f₁ f₂) :
442442
Zigzag (StructuredArrow.mk f₁.2) (StructuredArrow.mk f₂.2) := by
443443
induction t with

Mathlib/Data/Seq/Seq.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -918,7 +918,7 @@ theorem terminatedAt_map_iff {f : α → β} {s : Seq α} {n : ℕ} :
918918
simp [TerminatedAt]
919919

920920
@[simp]
921-
theorem terminates_map_iff {f : α → β} {s : Seq α} :
921+
theorem terminates_map_iff {f : α → β} {s : Seq α} :
922922
(map f s).Terminates ↔ s.Terminates := by
923923
simp [Terminates]
924924

Mathlib/LinearAlgebra/Vandermonde.lean

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -118,18 +118,19 @@ theorem vandermonde_transpose_mul_vandermonde (v : Fin n → R) (i j) :
118118
simp only [vandermonde_apply, Matrix.mul_apply, Matrix.transpose_apply, pow_add]
119119

120120
theorem rectVandermonde_apply_zero_right {α : Type*} {v w : α → R} {i : α} (hw : w i = 0) :
121-
rectVandermonde v w (n+1) i = Pi.single (Fin.last n) ((v i) ^ n) := by
121+
rectVandermonde v w (n + 1) i = Pi.single (Fin.last n) ((v i) ^ n) := by
122122
ext j
123123
obtain rfl | hlt := j.le_last.eq_or_lt
124124
· simp [rectVandermonde_apply]
125125
rw [rectVandermonde_apply, Pi.single_eq_of_ne hlt.ne, hw, zero_pow, mul_zero]
126126
simpa [Nat.sub_eq_zero_iff_le] using hlt
127127

128-
theorem projVandermonde_apply_of_ne_zero {v w : Fin (n+1) → K} {i j : Fin (n+1)} (hw : w i ≠ 0) :
128+
theorem projVandermonde_apply_of_ne_zero
129+
{v w : Fin (n + 1) → K} {i j : Fin (n + 1)} (hw : w i ≠ 0) :
129130
projVandermonde v w i j = (v i) ^ j.1 * (w i) ^ n / (w i) ^ j.1 := by
130131
rw [projVandermonde_apply, eq_div_iff (by simp [hw]), mul_assoc, ← pow_add, rev_add_cast]
131132

132-
theorem projVandermonde_apply_zero_right {v w : Fin (n+1) → R} {i : Fin (n+1)} (hw : w i = 0) :
133+
theorem projVandermonde_apply_zero_right {v w : Fin (n + 1) → R} {i : Fin (n + 1)} (hw : w i = 0) :
133134
projVandermonde v w i = Pi.single (Fin.last n) ((v i) ^ n) := by
134135
ext j
135136
obtain rfl | hlt := j.le_last.eq_or_lt
@@ -165,7 +166,7 @@ private theorem det_projVandermonde_of_field (v w : Fin n → K) :
165166
/- Let `W` be obtained from the matrix by subtracting `r = (v 0) / (w 0)` times each column
166167
from the next column, starting from the penultimate column. This doesn't change the determinant.-/
167168
set r := v 0 / w 0 with hr
168-
set W : Matrix (Fin (n+1)) (Fin (n+1)) K := .of fun i ↦ (cons (projVandermonde v w i 0)
169+
set W : Matrix (Fin (n + 1)) (Fin (n + 1)) K := .of fun i ↦ (cons (projVandermonde v w i 0)
169170
(fun j ↦ projVandermonde v w i j.succ - r * projVandermonde v w i j.castSucc))
170171
-- deleting the first row and column of `W` gives a row-scaling of a Vandermonde matrix.
171172
have hW_eq : (W.submatrix succ succ) = .of fun i j ↦ (v (succ i) - r * w (succ i)) *

Mathlib/MeasureTheory/OuterMeasure/BorelCantelli.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
8686
∀ᵐ x ∂μ, ∀ᶠ n in atTop, x ∉ s n :=
8787
measure_setOf_frequently_eq_zero hs
8888

89-
theorem measure_liminf_cofinite_eq_zero [Infinite ι] {s : ι → Set α} (h : ∑' i, μ (s i) ≠ ∞) :
89+
theorem measure_liminf_cofinite_eq_zero [Infinite ι] {s : ι → Set α} (h : ∑' i, μ (s i) ≠ ∞) :
9090
μ (liminf s cofinite) = 0 := by
9191
rw [← le_zero_iff, ← measure_limsup_cofinite_eq_zero h]
9292
exact measure_mono liminf_le_limsup

Mathlib/RingTheory/Finiteness/Subalgebra.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ open Submodule
2020

2121
variable {R A : Type*} [CommSemiring R] [Semiring A] [Algebra R A]
2222

23-
theorem fg_bot_toSubmodule : (⊥ : Subalgebra R A).toSubmodule.FG :=
23+
theorem fg_bot_toSubmodule : (⊥ : Subalgebra R A).toSubmodule.FG :=
2424
⟨{1}, by simp [Algebra.toSubmodule_bot, one_eq_span]⟩
2525

2626
instance finite_bot : Module.Finite R (⊥ : Subalgebra R A) :=

0 commit comments

Comments
 (0)