Skip to content

Commit 10a49d7

Browse files
committed
chore(CategoryTheory/Whiskering): lemmas about NatTrans.hcomp and whiskering (#23639)
Add basic lemmas that were missing in the API.
1 parent a49aef0 commit 10a49d7

File tree

1 file changed

+21
-0
lines changed

1 file changed

+21
-0
lines changed

Mathlib/CategoryTheory/Whiskering.lean

Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -47,6 +47,11 @@ def whiskerLeft (F : C ⥤ D) {G H : D ⥤ E} (α : G ⟶ H) :
4747
app X := α.app (F.obj X)
4848
naturality X Y f := by rw [Functor.comp_map, Functor.comp_map, α.naturality]
4949

50+
@[simp]
51+
lemma NatTrans.id_hcomp (F : C ⥤ D) {G H : D ⥤ E} (α : G ⟶ H) : 𝟙 F ◫ α = whiskerLeft F α := by
52+
ext
53+
simp
54+
5055
/-- If `α : G ⟶ H` then
5156
`whisker_right α F : (G ⋙ F) ⟶ (G ⋙ F)` has components `F.map (α.app X)`.
5257
-/
@@ -57,6 +62,11 @@ def whiskerRight {G H : C ⥤ D} (α : G ⟶ H) (F : D ⥤ E) :
5762
naturality X Y f := by
5863
rw [Functor.comp_map, Functor.comp_map, ← F.map_comp, ← F.map_comp, α.naturality]
5964

65+
@[simp]
66+
lemma NatTrans.hcomp_id {G H : C ⥤ D} (α : G ⟶ H) (F : D ⥤ E) : α ◫ 𝟙 F = whiskerRight α F := by
67+
ext
68+
simp
69+
6070
variable (C D E)
6171

6272
/-- Left-composition gives a functor `(C ⥤ D) ⥤ ((D ⥤ E) ⥤ (C ⥤ E))`.
@@ -185,6 +195,17 @@ theorem whiskerRight_comp {G H K : C ⥤ D} (α : G ⟶ H) (β : H ⟶ K) (F : D
185195
whiskerRight (α ≫ β) F = whiskerRight α F ≫ whiskerRight β F :=
186196
((whiskeringRight C D E).obj F).map_comp α β
187197

198+
@[reassoc]
199+
theorem whiskerLeft_comp_whiskerRight {F G : C ⥤ D} {H K : D ⥤ E} (α : F ⟶ G) (β : H ⟶ K) :
200+
whiskerLeft F β ≫ whiskerRight α K = whiskerRight α H ≫ whiskerLeft G β := by
201+
ext
202+
simp
203+
204+
lemma NatTrans.hcomp_eq_whiskerLeft_comp_whiskerRight {F G : C ⥤ D} {H K : D ⥤ E}
205+
(α : F ⟶ G) (β : H ⟶ K) : α ◫ β = whiskerLeft F β ≫ whiskerRight α K := by
206+
ext
207+
simp
208+
188209
/-- If `α : G ≅ H` is a natural isomorphism then
189210
`iso_whisker_left F α : (F ⋙ G) ≅ (F ⋙ H)` has components `α.app (F.obj X)`.
190211
-/

0 commit comments

Comments
 (0)