|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Oliver Nash. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Oliver Nash |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module algebra.lie.semisimple |
| 7 | +! leanprover-community/mathlib commit 356447fe00e75e54777321045cdff7c9ea212e60 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Algebra.Lie.Solvable |
| 12 | + |
| 13 | +/-! |
| 14 | +# Semisimple Lie algebras |
| 15 | +
|
| 16 | +The famous Cartan-Dynkin-Killing classification of semisimple Lie algebras renders them one of the |
| 17 | +most important classes of Lie algebras. In this file we define simple and semisimple Lie algebras |
| 18 | +and prove some basic related results. |
| 19 | +
|
| 20 | +## Main definitions |
| 21 | +
|
| 22 | + * `LieModule.IsIrreducible` |
| 23 | + * `LieAlgebra.IsSimple` |
| 24 | + * `LieAlgebra.IsSemisimple` |
| 25 | + * `LieAlgebra.isSemisimple_iff_no_solvable_ideals` |
| 26 | + * `LieAlgebra.isSemisimple_iff_no_abelian_ideals` |
| 27 | + * `LieAlgebra.abelian_radical_iff_solvable_is_abelian` |
| 28 | +
|
| 29 | +## Tags |
| 30 | +
|
| 31 | +lie algebra, radical, simple, semisimple |
| 32 | +-/ |
| 33 | + |
| 34 | + |
| 35 | +universe u v w w₁ w₂ |
| 36 | + |
| 37 | +/-- A Lie module is irreducible if it is zero or its only non-trivial Lie submodule is itself. -/ |
| 38 | +class LieModule.IsIrreducible (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] |
| 39 | + [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] : |
| 40 | + Prop where |
| 41 | + Irreducible : ∀ N : LieSubmodule R L M, N ≠ ⊥ → N = ⊤ |
| 42 | +#align lie_module.is_irreducible LieModule.IsIrreducible |
| 43 | + |
| 44 | +namespace LieAlgebra |
| 45 | + |
| 46 | +variable (R : Type u) (L : Type v) |
| 47 | + |
| 48 | +variable [CommRing R] [LieRing L] [LieAlgebra R L] |
| 49 | + |
| 50 | +/-- A Lie algebra is simple if it is irreducible as a Lie module over itself via the adjoint |
| 51 | +action, and it is non-Abelian. -/ |
| 52 | +class IsSimple extends LieModule.IsIrreducible R L L : Prop where |
| 53 | + non_abelian : ¬IsLieAbelian L |
| 54 | +#align lie_algebra.is_simple LieAlgebra.IsSimple |
| 55 | + |
| 56 | +/-- A semisimple Lie algebra is one with trivial radical. |
| 57 | +
|
| 58 | +Note that the label 'semisimple' is apparently not universally agreed |
| 59 | +[upon](https://mathoverflow.net/questions/149391/on-radicals-of-a-lie-algebra#comment383669_149391) |
| 60 | +for general coefficients. We are following [Seligman, page 15](seligman1967) and using the label |
| 61 | +for the weakest of the various properties which are all equivalent over a field of characteristic |
| 62 | +zero. -/ |
| 63 | +class IsSemisimple : Prop where |
| 64 | + semisimple : radical R L = ⊥ |
| 65 | +#align lie_algebra.is_semisimple LieAlgebra.IsSemisimple |
| 66 | + |
| 67 | +theorem isSemisimple_iff_no_solvable_ideals : |
| 68 | + IsSemisimple R L ↔ ∀ I : LieIdeal R L, IsSolvable R I → I = ⊥ := |
| 69 | + ⟨fun h => sSup_eq_bot.mp h.semisimple, fun h => ⟨sSup_eq_bot.mpr h⟩⟩ |
| 70 | +#align lie_algebra.is_semisimple_iff_no_solvable_ideals LieAlgebra.isSemisimple_iff_no_solvable_ideals |
| 71 | + |
| 72 | +theorem isSemisimple_iff_no_abelian_ideals : |
| 73 | + IsSemisimple R L ↔ ∀ I : LieIdeal R L, IsLieAbelian I → I = ⊥ := by |
| 74 | + rw [isSemisimple_iff_no_solvable_ideals] |
| 75 | + constructor <;> intro h₁ I h₂ |
| 76 | + · haveI : IsLieAbelian I := h₂; apply h₁; exact LieAlgebra.ofAbelianIsSolvable R I |
| 77 | + · haveI : IsSolvable R I := h₂; rw [← abelian_of_solvable_ideal_eq_bot_iff]; apply h₁ |
| 78 | + exact abelian_derivedAbelianOfIdeal I |
| 79 | +#align lie_algebra.is_semisimple_iff_no_abelian_ideals LieAlgebra.isSemisimple_iff_no_abelian_ideals |
| 80 | + |
| 81 | +@[simp] |
| 82 | +theorem center_eq_bot_of_semisimple [h : IsSemisimple R L] : center R L = ⊥ := by |
| 83 | + rw [isSemisimple_iff_no_abelian_ideals] at h; apply h; infer_instance |
| 84 | +#align lie_algebra.center_eq_bot_of_semisimple LieAlgebra.center_eq_bot_of_semisimple |
| 85 | + |
| 86 | +/-- A simple Lie algebra is semisimple. -/ |
| 87 | +instance (priority := 100) isSemisimpleOfIsSimple [h : IsSimple R L] : IsSemisimple R L := by |
| 88 | + rw [isSemisimple_iff_no_abelian_ideals] |
| 89 | + intro I hI |
| 90 | + obtain @⟨⟨h₁⟩, h₂⟩ := id h |
| 91 | + by_contra contra |
| 92 | + rw [h₁ I contra, lie_abelian_iff_equiv_lie_abelian LieIdeal.topEquiv] at hI |
| 93 | + exact h₂ hI |
| 94 | +#align lie_algebra.is_semisimple_of_is_simple LieAlgebra.isSemisimpleOfIsSimple |
| 95 | + |
| 96 | +/-- A semisimple Abelian Lie algebra is trivial. -/ |
| 97 | +theorem subsingleton_of_semisimple_lie_abelian [IsSemisimple R L] [h : IsLieAbelian L] : |
| 98 | + Subsingleton L := by |
| 99 | + rw [isLieAbelian_iff_center_eq_top R L, center_eq_bot_of_semisimple] at h |
| 100 | + exact (LieSubmodule.subsingleton_iff R L L).mp (subsingleton_of_bot_eq_top h) |
| 101 | +#align lie_algebra.subsingleton_of_semisimple_lie_abelian LieAlgebra.subsingleton_of_semisimple_lie_abelian |
| 102 | + |
| 103 | +theorem abelian_radical_of_semisimple [IsSemisimple R L] : IsLieAbelian (radical R L) := by |
| 104 | + rw [IsSemisimple.semisimple]; exact isLieAbelian_bot R L |
| 105 | +#align lie_algebra.abelian_radical_of_semisimple LieAlgebra.abelian_radical_of_semisimple |
| 106 | + |
| 107 | +/-- The two properties shown to be equivalent here are possible definitions for a Lie algebra |
| 108 | +to be reductive. |
| 109 | +
|
| 110 | +Note that there is absolutely [no agreement](https://mathoverflow.net/questions/284713/) on what |
| 111 | +the label 'reductive' should mean when the coefficients are not a field of characteristic zero. -/ |
| 112 | +theorem abelian_radical_iff_solvable_is_abelian [IsNoetherian R L] : |
| 113 | + IsLieAbelian (radical R L) ↔ ∀ I : LieIdeal R L, IsSolvable R I → IsLieAbelian I := by |
| 114 | + constructor |
| 115 | + · rintro h₁ I h₂ |
| 116 | + rw [LieIdeal.solvable_iff_le_radical] at h₂ |
| 117 | + exact (LieIdeal.homOfLe_injective h₂).isLieAbelian h₁ |
| 118 | + · intro h; apply h; infer_instance |
| 119 | +#align lie_algebra.abelian_radical_iff_solvable_is_abelian LieAlgebra.abelian_radical_iff_solvable_is_abelian |
| 120 | + |
| 121 | +theorem ad_ker_eq_bot_of_semisimple [IsSemisimple R L] : (ad R L).ker = ⊥ := by simp |
| 122 | +#align lie_algebra.ad_ker_eq_bot_of_semisimple LieAlgebra.ad_ker_eq_bot_of_semisimple |
| 123 | + |
| 124 | +end LieAlgebra |
0 commit comments