@@ -67,8 +67,8 @@ Auxiliary definition for `functorialityIsLeftAdjoint`.
67
67
-/
68
68
@[simps]
69
69
def functorialityUnit :
70
- 𝟭 (Cocone K) ⟶ Cocones.functoriality _ F ⋙ functorialityRightAdjoint adj K where
71
- app c := { hom := adj.unit.app c.pt }
70
+ 𝟭 (Cocone K) ⟶ Cocones.functoriality _ F ⋙ functorialityRightAdjoint adj K where
71
+ app c := { hom := adj.unit.app c.pt }
72
72
#align category_theory.adjunction.functoriality_unit CategoryTheory.Adjunction.functorialityUnit
73
73
74
74
/-- The counit for the adjunction for `Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F)`.
@@ -77,8 +77,8 @@ Auxiliary definition for `functorialityIsLeftAdjoint`.
77
77
-/
78
78
@[simps]
79
79
def functorialityCounit :
80
- functorialityRightAdjoint adj K ⋙ Cocones.functoriality _ F ⟶ 𝟭 (Cocone (K ⋙ F)) where
81
- app c := { hom := adj.counit.app c.pt }
80
+ functorialityRightAdjoint adj K ⋙ Cocones.functoriality _ F ⟶ 𝟭 (Cocone (K ⋙ F)) where
81
+ app c := { hom := adj.counit.app c.pt }
82
82
#align category_theory.adjunction.functoriality_counit CategoryTheory.Adjunction.functorialityCounit
83
83
84
84
/-- The functor `Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F)` is a left adjoint. -/
@@ -181,8 +181,8 @@ Auxiliary definition for `functorialityIsRightAdjoint`.
181
181
-/
182
182
@[simps]
183
183
def functorialityUnit' :
184
- 𝟭 (Cone (K ⋙ G)) ⟶ functorialityLeftAdjoint adj K ⋙ Cones.functoriality _ G where
185
- app c := { hom := adj.unit.app c.pt }
184
+ 𝟭 (Cone (K ⋙ G)) ⟶ functorialityLeftAdjoint adj K ⋙ Cones.functoriality _ G where
185
+ app c := { hom := adj.unit.app c.pt }
186
186
#align category_theory.adjunction.functoriality_unit' CategoryTheory.Adjunction.functorialityUnit'
187
187
188
188
/-- The counit for the adjunction for `Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G)`.
@@ -191,8 +191,8 @@ Auxiliary definition for `functorialityIsRightAdjoint`.
191
191
-/
192
192
@[simps]
193
193
def functorialityCounit' :
194
- Cones.functoriality _ G ⋙ functorialityLeftAdjoint adj K ⟶ 𝟭 (Cone K) where
195
- app c := { hom := adj.counit.app c.pt }
194
+ Cones.functoriality _ G ⋙ functorialityLeftAdjoint adj K ⟶ 𝟭 (Cone K) where
195
+ app c := { hom := adj.counit.app c.pt }
196
196
#align category_theory.adjunction.functoriality_counit' CategoryTheory.Adjunction.functorialityCounit'
197
197
198
198
/-- The functor `Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G)` is a right adjoint. -/
0 commit comments