Skip to content

Commit 11dbfb2

Browse files
committed
chore: exactly 4 spaces in subsequent lines for def (#7321)
Co-authored-by: Moritz Firsching <firsching@google.com>
1 parent d1b8745 commit 11dbfb2

File tree

41 files changed

+77
-79
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

41 files changed

+77
-79
lines changed

Mathlib/Algebra/Category/MonCat/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -370,7 +370,7 @@ end CategoryTheory.Iso
370370
in `MonCat` -/
371371
@[to_additive addEquivIsoAddMonCatIso]
372372
def mulEquivIsoMonCatIso {X Y : Type u} [Monoid X] [Monoid Y] :
373-
X ≃* Y ≅ MonCat.of X ≅ MonCat.of Y where
373+
X ≃* Y ≅ MonCat.of X ≅ MonCat.of Y where
374374
hom e := e.toMonCatIso
375375
inv i := i.monCatIsoToMulEquiv
376376
set_option linter.uppercaseLean3 false in

Mathlib/Algebra/Hom/Equiv/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -622,7 +622,7 @@ where the equivalence between the targets is multiplicative.
622622
@[to_additive (attr := simps apply) "An additive analogue of `Equiv.arrowCongr`,
623623
where the equivalence between the targets is additive."]
624624
def arrowCongr {M N P Q : Type*} [Mul P] [Mul Q] (f : M ≃ N) (g : P ≃* Q) :
625-
(M → P) ≃* (N → Q) where
625+
(M → P) ≃* (N → Q) where
626626
toFun h n := g (h (f.symm n))
627627
invFun k m := g.symm (k (f m))
628628
left_inv h := by ext; simp

Mathlib/Algebra/Hom/Group/Defs.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -814,7 +814,7 @@ equalities. -/
814814
"Copy of a `ZeroHom` with a new `toFun` equal to the old one. Useful to fix
815815
definitional equalities."]
816816
protected def OneHom.copy [One M] [One N] (f : OneHom M N) (f' : M → N) (h : f' = f) :
817-
OneHom M N where
817+
OneHom M N where
818818
toFun := f'
819819
map_one' := h.symm ▸ f.map_one'
820820
#align one_hom.copy OneHom.copy
@@ -840,7 +840,7 @@ equalities. -/
840840
"Copy of an `AddHom` with a new `toFun` equal to the old one. Useful to fix
841841
definitional equalities."]
842842
protected def MulHom.copy [Mul M] [Mul N] (f : M →ₙ* N) (f' : M → N) (h : f' = f) :
843-
M →ₙ* N where
843+
M →ₙ* N where
844844
toFun := f'
845845
map_mul' := h.symm ▸ f.map_mul'
846846
#align mul_hom.copy MulHom.copy
@@ -1045,7 +1045,7 @@ def MulHom.comp [Mul M] [Mul N] [Mul P] (hnp : N →ₙ* P) (hmn : M →ₙ* N)
10451045
/-- Composition of monoid morphisms as a monoid morphism. -/
10461046
@[to_additive]
10471047
def MonoidHom.comp [MulOneClass M] [MulOneClass N] [MulOneClass P] (hnp : N →* P) (hmn : M →* N) :
1048-
M →* P where
1048+
M →* P where
10491049
toFun := hnp ∘ hmn
10501050
map_one' := by simp
10511051
map_mul' := by simp

Mathlib/Algebra/Homology/HomologicalComplex.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -93,8 +93,8 @@ theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.X = C₂.X)
9393
#align homological_complex.ext HomologicalComplex.ext
9494

9595
/-- The obvious isomorphism `K.X p ≅ K.X q` when `p = q`. -/
96-
def XIsoOfEq (K : HomologicalComplex V c) {p q : ι} (h : p = q) :
97-
K.X p ≅ K.X q := eqToIso (by rw [h])
96+
def XIsoOfEq (K : HomologicalComplex V c) {p q : ι} (h : p = q) : K.X p ≅ K.X q :=
97+
eqToIso (by rw [h])
9898

9999
@[simp]
100100
lemma XIsoOfEq_rfl (K : HomologicalComplex V c) (p : ι) :

Mathlib/Algebra/Homology/HomotopyCategory/HomComplex.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ def mk (v : ∀ (p q : ℤ) (_ : p + n = q), F.X p ⟶ G.X q) : Cochain F G n :=
8181
/-- The value of a cochain on a triplet `⟨p, q, hpq⟩`. -/
8282
@[pp_dot]
8383
def v (γ : Cochain F G n) (p q : ℤ) (hpq : p + n = q) :
84-
F.X p ⟶ G.X q := γ ⟨p, q, hpq⟩
84+
F.X p ⟶ G.X q := γ ⟨p, q, hpq⟩
8585

8686
@[simp]
8787
lemma mk_v (v : ∀ (p q : ℤ) (_ : p + n = q), F.X p ⟶ G.X q) (p q : ℤ) (hpq : p + n = q) :

Mathlib/Algebra/Homology/ShortComplex/RightHomology.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -144,7 +144,7 @@ variable (S)
144144
by any limit kernel fork of `S.g` -/
145145
@[simps]
146146
def ofIsLimitKernelFork (hf : S.f = 0) (c : KernelFork S.g) (hc : IsLimit c) :
147-
S.RightHomologyData where
147+
S.RightHomologyData where
148148
Q := S.X₂
149149
H := c.pt
150150
p := 𝟙 _
@@ -169,7 +169,7 @@ ofIsLimitKernelFork S hf _ (kernelIsKernel _)
169169
by any colimit cokernel cofork of `S.g` -/
170170
@[simps]
171171
def ofIsColimitCokernelCofork (hg : S.g = 0) (c : CokernelCofork S.f) (hc : IsColimit c) :
172-
S.RightHomologyData where
172+
S.RightHomologyData where
173173
Q := c.pt
174174
H := c.pt
175175
p := c.π
@@ -363,7 +363,7 @@ attribute [nolint simpNF] mk.injEq
363363
/-- The right homology map data associated to the zero morphism between two short complexes. -/
364364
@[simps]
365365
def zero (h₁ : S₁.RightHomologyData) (h₂ : S₂.RightHomologyData) :
366-
RightHomologyMapData 0 h₁ h₂ where
366+
RightHomologyMapData 0 h₁ h₂ where
367367
φQ := 0
368368
φH := 0
369369

@@ -410,7 +410,7 @@ lemma congr_φQ {γ₁ γ₂ : RightHomologyMapData φ h₁ h₂} (eq : γ₁ =
410410
morphism `φ : S₁ ⟶ S₂` is given by the action `φ.τ₂` on the middle objects. -/
411411
@[simps]
412412
def ofZeros (φ : S₁ ⟶ S₂) (hf₁ : S₁.f = 0) (hg₁ : S₁.g = 0) (hf₂ : S₂.f = 0) (hg₂ : S₂.g = 0) :
413-
RightHomologyMapData φ (RightHomologyData.ofZeros S₁ hf₁ hg₁)
413+
RightHomologyMapData φ (RightHomologyData.ofZeros S₁ hf₁ hg₁)
414414
(RightHomologyData.ofZeros S₂ hf₂ hg₂) where
415415
φQ := φ.τ₂
416416
φH := φ.τ₂

Mathlib/Algebra/Ring/Equiv.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -120,8 +120,8 @@ instance (priority := 100) toNonUnitalRingHomClass [NonUnitalNonAssocSemiring R]
120120
`RingEquiv`. This is declared as the default coercion from `F` to `α ≃+* β`. -/
121121
@[coe]
122122
def toRingEquiv [Mul α] [Add α] [Mul β] [Add β] [RingEquivClass F α β] (f : F) :
123-
α ≃+* β :=
124-
{ (f : α ≃* β), (f : α ≃+ β) with }
123+
α ≃+* β :=
124+
{ (f : α ≃* β), (f : α ≃+ β) with }
125125

126126
end RingEquivClass
127127

Mathlib/Algebra/Ring/Opposite.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -198,7 +198,7 @@ def NonUnitalRingHom.fromOpposite {R S : Type*} [NonUnitalNonAssocSemiring R]
198198
`αᵐᵒᵖ →+* βᵐᵒᵖ`. This is the action of the (fully faithful) `ᵐᵒᵖ`-functor on morphisms. -/
199199
@[simps]
200200
def NonUnitalRingHom.op {α β} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] :
201-
(α →ₙ+* β) ≃ (αᵐᵒᵖ →ₙ+* βᵐᵒᵖ) where
201+
(α →ₙ+* β) ≃ (αᵐᵒᵖ →ₙ+* βᵐᵒᵖ) where
202202
toFun f := { AddMonoidHom.mulOp f.toAddMonoidHom, MulHom.op f.toMulHom with }
203203
invFun f := { AddMonoidHom.mulUnop f.toAddMonoidHom, MulHom.unop f.toMulHom with }
204204
left_inv _ := rfl

Mathlib/CategoryTheory/Adjunction/Limits.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -67,8 +67,8 @@ Auxiliary definition for `functorialityIsLeftAdjoint`.
6767
-/
6868
@[simps]
6969
def functorialityUnit :
70-
𝟭 (Cocone K) ⟶ Cocones.functoriality _ F ⋙ functorialityRightAdjoint adj K where
71-
app c := { hom := adj.unit.app c.pt }
70+
𝟭 (Cocone K) ⟶ Cocones.functoriality _ F ⋙ functorialityRightAdjoint adj K where
71+
app c := { hom := adj.unit.app c.pt }
7272
#align category_theory.adjunction.functoriality_unit CategoryTheory.Adjunction.functorialityUnit
7373

7474
/-- The counit for the adjunction for `Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F)`.
@@ -77,8 +77,8 @@ Auxiliary definition for `functorialityIsLeftAdjoint`.
7777
-/
7878
@[simps]
7979
def functorialityCounit :
80-
functorialityRightAdjoint adj K ⋙ Cocones.functoriality _ F ⟶ 𝟭 (Cocone (K ⋙ F)) where
81-
app c := { hom := adj.counit.app c.pt }
80+
functorialityRightAdjoint adj K ⋙ Cocones.functoriality _ F ⟶ 𝟭 (Cocone (K ⋙ F)) where
81+
app c := { hom := adj.counit.app c.pt }
8282
#align category_theory.adjunction.functoriality_counit CategoryTheory.Adjunction.functorialityCounit
8383

8484
/-- The functor `Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F)` is a left adjoint. -/
@@ -181,8 +181,8 @@ Auxiliary definition for `functorialityIsRightAdjoint`.
181181
-/
182182
@[simps]
183183
def functorialityUnit' :
184-
𝟭 (Cone (K ⋙ G)) ⟶ functorialityLeftAdjoint adj K ⋙ Cones.functoriality _ G where
185-
app c := { hom := adj.unit.app c.pt }
184+
𝟭 (Cone (K ⋙ G)) ⟶ functorialityLeftAdjoint adj K ⋙ Cones.functoriality _ G where
185+
app c := { hom := adj.unit.app c.pt }
186186
#align category_theory.adjunction.functoriality_unit' CategoryTheory.Adjunction.functorialityUnit'
187187

188188
/-- The counit for the adjunction for `Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G)`.
@@ -191,8 +191,8 @@ Auxiliary definition for `functorialityIsRightAdjoint`.
191191
-/
192192
@[simps]
193193
def functorialityCounit' :
194-
Cones.functoriality _ G ⋙ functorialityLeftAdjoint adj K ⟶ 𝟭 (Cone K) where
195-
app c := { hom := adj.counit.app c.pt }
194+
Cones.functoriality _ G ⋙ functorialityLeftAdjoint adj K ⟶ 𝟭 (Cone K) where
195+
app c := { hom := adj.counit.app c.pt }
196196
#align category_theory.adjunction.functoriality_counit' CategoryTheory.Adjunction.functorialityCounit'
197197

198198
/-- The functor `Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G)` is a right adjoint. -/

Mathlib/CategoryTheory/Adjunction/Reflective.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -167,21 +167,21 @@ Functor.essImage.unit_isIso X.property
167167
/-- The counit isomorphism of the equivalence `D ≌ i.EssImageSubcategory` given
168168
by `equivEssImageOfReflective` when the functor `i` is reflective. -/
169169
def equivEssImageOfReflective_counitIso_app [Reflective i] (X : Functor.EssImageSubcategory i) :
170-
((Functor.essImageInclusion i ⋙ leftAdjoint i) ⋙ Functor.toEssImage i).obj X ≅ X := by
170+
((Functor.essImageInclusion i ⋙ leftAdjoint i) ⋙ Functor.toEssImage i).obj X ≅ X := by
171171
refine' Iso.symm (@asIso _ _ X _ ((ofRightAdjoint i).unit.app X.obj) ?_)
172172
refine @isIso_of_reflects_iso _ _ _ _ _ _ _ i.essImageInclusion ?_ _
173173
dsimp
174174
exact inferInstance
175175

176176
lemma equivEssImageOfReflective_map_counitIso_app_hom [Reflective i]
177-
(X : Functor.EssImageSubcategory i) :
177+
(X : Functor.EssImageSubcategory i) :
178178
(Functor.essImageInclusion i).map (equivEssImageOfReflective_counitIso_app X).hom =
179179
inv (NatTrans.app (ofRightAdjoint i).unit X.obj) := by
180180
simp [equivEssImageOfReflective_counitIso_app, asIso]
181181
rfl
182182

183183
lemma equivEssImageOfReflective_map_counitIso_app_inv [Reflective i]
184-
(X : Functor.EssImageSubcategory i) :
184+
(X : Functor.EssImageSubcategory i) :
185185
(Functor.essImageInclusion i).map (equivEssImageOfReflective_counitIso_app X).inv =
186186
(NatTrans.app (ofRightAdjoint i).unit X.obj) := rfl
187187

0 commit comments

Comments
 (0)