@@ -84,9 +84,9 @@ non-empty. As a result, we can translate between the two.
84
84
85
85
86
86
namespace Finset
87
+ variable {ι : Type *} [ConditionallyCompleteLattice α]
87
88
88
- theorem sup'_eq_csSup_image [ConditionallyCompleteLattice β] (s : Finset α) (H) (f : α → β) :
89
- s.sup' H f = sSup (f '' s) := by
89
+ theorem sup'_eq_csSup_image (s : Finset ι) (H) (f : ι → α) : s.sup' H f = sSup (f '' s) := by
90
90
apply le_antisymm
91
91
· refine' Finset.sup'_le _ _ fun a ha => _
92
92
refine' le_csSup ⟨s.sup' H f, _⟩ ⟨a, ha, rfl⟩
@@ -97,18 +97,24 @@ theorem sup'_eq_csSup_image [ConditionallyCompleteLattice β] (s : Finset α) (H
97
97
exact Finset.le_sup' _ ha
98
98
#align finset.sup'_eq_cSup_image Finset.sup'_eq_csSup_image
99
99
100
- theorem inf'_eq_csInf_image [ConditionallyCompleteLattice β] (s : Finset α) (H) (f : α → β) :
101
- s.inf' H f = sInf (f '' s) :=
102
- @sup'_eq_csSup_image _ βᵒᵈ _ _ H _
100
+ theorem inf'_eq_csInf_image (s : Finset ι) (hs) (f : ι → α) : s.inf' hs f = sInf (f '' s) :=
101
+ sup'_eq_csSup_image (α := αᵒᵈ) _ hs _
103
102
#align finset.inf'_eq_cInf_image Finset.inf'_eq_csInf_image
104
103
105
- theorem sup'_id_eq_csSup [ConditionallyCompleteLattice α] (s : Finset α) (H ) :
106
- s.sup' H id = sSup s := by rw [sup'_eq_csSup_image s H , Set.image_id]
104
+ theorem sup'_id_eq_csSup (s : Finset α) (hs ) : s.sup' hs id = sSup s := by
105
+ rw [sup'_eq_csSup_image s hs , Set.image_id]
107
106
#align finset.sup'_id_eq_cSup Finset.sup'_id_eq_csSup
108
107
109
- theorem inf'_id_eq_csInf [ConditionallyCompleteLattice α] (s : Finset α) (H) :
110
- s.inf' H id = sInf s :=
111
- @sup'_id_eq_csSup αᵒᵈ _ _ H
108
+ theorem inf'_id_eq_csInf (s : Finset α) (hs) : s.inf' hs id = sInf s :=
109
+ sup'_id_eq_csSup (α := αᵒᵈ) _ hs
112
110
#align finset.inf'_id_eq_cInf Finset.inf'_id_eq_csInf
113
111
112
+ variable [Fintype ι] [Nonempty ι]
113
+
114
+ lemma sup'_univ_eq_ciSup (f : ι → α) : univ.sup' univ_nonempty f = ⨆ i, f i := by
115
+ simp [sup'_eq_csSup_image, iSup]
116
+
117
+ lemma inf'_univ_eq_ciInf (f : ι → α) : univ.inf' univ_nonempty f = ⨅ i, f i := by
118
+ simp [inf'_eq_csInf_image, iInf]
119
+
114
120
end Finset
0 commit comments