@@ -202,6 +202,7 @@ end ZeroHom
202
202
section AddMonoidHom
203
203
204
204
variable [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P]
205
+ variable {F : Type *} [AddMonoidHomClass F M N]
205
206
206
207
/-- Composition with a fixed additive homomorphism is itself an additive homomorphism on functions.
207
208
-/
@@ -232,14 +233,14 @@ theorem mapRange.addMonoidHom_toZeroHom (f : M →+ N) :
232
233
ZeroHom.ext fun _ => rfl
233
234
#align finsupp.map_range.add_monoid_hom_to_zero_hom Finsupp.mapRange.addMonoidHom_toZeroHom
234
235
235
- theorem mapRange_multiset_sum (f : M →+ N ) (m : Multiset (α →₀ M)) :
236
- mapRange f f. map_zero m.sum = (m.map fun x => mapRange f f. map_zero x).sum :=
237
- (mapRange.addMonoidHom f : (α →₀ _) →+ _).map_multiset_sum _
236
+ theorem mapRange_multiset_sum (f : F ) (m : Multiset (α →₀ M)) :
237
+ mapRange f ( map_zero f) m.sum = (m.map fun x => mapRange f ( map_zero f) x).sum :=
238
+ (mapRange.addMonoidHom (f : M →+ N) : (α →₀ _) →+ _).map_multiset_sum _
238
239
#align finsupp.map_range_multiset_sum Finsupp.mapRange_multiset_sum
239
240
240
- theorem mapRange_finset_sum (f : M →+ N ) (s : Finset ι) (g : ι → α →₀ M) :
241
- mapRange f f. map_zero (∑ x in s, g x) = ∑ x in s, mapRange f f. map_zero (g x) :=
242
- (mapRange.addMonoidHom f : (α →₀ _) →+ _).map_sum _ _
241
+ theorem mapRange_finset_sum (f : F ) (s : Finset ι) (g : ι → α →₀ M) :
242
+ mapRange f ( map_zero f) (∑ x in s, g x) = ∑ x in s, mapRange f ( map_zero f) (g x) :=
243
+ (mapRange.addMonoidHom (f : M →+ N) : (α →₀ _) →+ _).map_sum _ _
243
244
#align finsupp.map_range_finset_sum Finsupp.mapRange_finset_sum
244
245
245
246
/-- `Finsupp.mapRange.AddMonoidHom` as an equiv. -/
0 commit comments