@@ -469,6 +469,7 @@ theorem mul_rightUnitor {M : Mon_ C} :
469
469
simp only [Category.assoc, Category.id_comp]
470
470
#align Mon_.mul_right_unitor Mon_.mul_rightUnitor
471
471
472
+ @[simps tensorObj_X tensorHom_hom]
472
473
instance monMonoidalStruct : MonoidalCategoryStruct (Mon_ C) :=
473
474
let tensorObj (M N : Mon_ C) : Mon_ C :=
474
475
{ X := M.X ⊗ N.X
@@ -497,14 +498,39 @@ instance monMonoidalStruct : MonoidalCategoryStruct (Mon_ C) :=
497
498
leftUnitor := fun M ↦ isoOfIso (λ_ M.X) one_leftUnitor mul_leftUnitor
498
499
rightUnitor := fun M ↦ isoOfIso (ρ_ M.X) one_rightUnitor mul_rightUnitor }
499
500
500
- instance monMonoidal : MonoidalCategory (Mon_ C) := .ofTensorHom
501
- (tensor_id := by intros; ext; apply tensor_id)
502
- (tensor_comp := by intros; ext; apply tensor_comp)
503
- (associator_naturality := by intros; ext; dsimp; apply associator_naturality)
504
- (leftUnitor_naturality := by intros; ext; dsimp; apply leftUnitor_naturality)
505
- (rightUnitor_naturality := by intros; ext; dsimp; apply rightUnitor_naturality)
506
- (pentagon := by intros; ext; dsimp; apply pentagon)
507
- (triangle := by intros; ext; dsimp; apply triangle)
501
+ @[simp]
502
+ theorem tensorUnit_X : (𝟙_ (Mon_ C)).X = 𝟙_ C := rfl
503
+
504
+ @[simp]
505
+ theorem whiskerLeft_hom {X Y : Mon_ C} (f : X ⟶ Y) (Z : Mon_ C) :
506
+ (f ▷ Z).hom = f.hom ▷ Z.X := by
507
+ rw [← tensorHom_id]; rfl
508
+
509
+ @[simp]
510
+ theorem whiskerRight_hom (X : Mon_ C) {Y Z : Mon_ C} (f : Y ⟶ Z) :
511
+ (X ◁ f).hom = X.X ◁ f.hom := by
512
+ rw [← id_tensorHom]; rfl
513
+
514
+ @[simp]
515
+ theorem leftUnitor_hom_hom (X : Mon_ C) : (λ_ X).hom.hom = (λ_ X.X).hom := rfl
516
+
517
+ @[simp]
518
+ theorem leftUnitor_inv_hom (X : Mon_ C) : (λ_ X).inv.hom = (λ_ X.X).inv := rfl
519
+
520
+ @[simp]
521
+ theorem rightUnitor_hom_hom (X : Mon_ C) : (ρ_ X).hom.hom = (ρ_ X.X).hom := rfl
522
+
523
+ @[simp]
524
+ theorem rightUnitor_inv_hom (X : Mon_ C) : (ρ_ X).inv.hom = (ρ_ X.X).inv := rfl
525
+
526
+ @[simp]
527
+ theorem associator_hom_hom (X Y Z : Mon_ C) : (α_ X Y Z).hom.hom = (α_ X.X Y.X Z.X).hom := rfl
528
+
529
+ @[simp]
530
+ theorem associator_inv_hom (X Y Z : Mon_ C) : (α_ X Y Z).inv.hom = (α_ X.X Y.X Z.X).inv := rfl
531
+
532
+ instance monMonoidal : MonoidalCategory (Mon_ C) where
533
+ tensorHom_def := by intros; ext; simp [tensorHom_def]
508
534
#align Mon_.Mon_monoidal Mon_.monMonoidal
509
535
510
536
end Mon_
0 commit comments