@@ -34,7 +34,7 @@ run_cmd liftTermElabM <| do
34
34
structure Foo2 (α : Type _) : Type _ where
35
35
elim : α × α
36
36
37
- def Foo2.simps .elim (α : Type _) : Foo2 α → α × α := fun x => (x.elim.1 , x.elim.2 )
37
+ def Foo2.Simps .elim (α : Type _) : Foo2 α → α × α := fun x => (x.elim.1 , x.elim.2 )
38
38
39
39
initialize_simps_projections Foo2
40
40
@@ -70,7 +70,7 @@ initialize_simps_projections Top
70
70
71
71
structure NewTop (α β : Type _) extends Right α β, Left α
72
72
73
- def NewTop.simps .newElim {α β : Type _} (x : NewTop α β) : α × α := x.elim
73
+ def NewTop.Simps .newElim {α β : Type _} (x : NewTop α β) : α × α := x.elim
74
74
75
75
initialize_simps_projections NewTop (toRight_toFoo2_elim → newElim)
76
76
@@ -578,7 +578,7 @@ instance : CoeFun (α ≃ β) (λ _ => α → β) := ⟨Equiv.toFun⟩
578
578
def Equiv.symm (e : α ≃ β) : β ≃ α := ⟨e.invFun, e.toFun⟩
579
579
580
580
/-- See Note [custom simps projection] -/
581
- def Equiv.simps .invFun (e : α ≃ β) : β → α := e.symm
581
+ def Equiv.Simps .invFun (e : α ≃ β) : β → α := e.symm
582
582
583
583
/-- Composition of equivalences `e₁ : α ≃ β` and `e₂ : β ≃ γ`. -/
584
584
@[simps (config := {simpRhs := true})]
@@ -602,7 +602,7 @@ local infix:25 (priority := high) " ≃ " => FaultyManualCoercion.Equiv
602
602
variable {α β γ : Sort _}
603
603
604
604
/-- See Note [custom simps projection] -/
605
- noncomputable def Equiv.simps .invFun (e : α ≃ β) : β → α := Classical.choice ⟨e.invFun⟩
605
+ noncomputable def Equiv.Simps .invFun (e : α ≃ β) : β → α := Classical.choice ⟨e.invFun⟩
606
606
607
607
run_cmd liftTermElabM <| do
608
608
successIfFail (simpsGetRawProjections `FaultyManualCoercion.Equiv)
@@ -628,7 +628,7 @@ instance : CoeFun (α ≃ β) (λ _ => α → β) := ⟨Equiv.toFun⟩
628
628
def Equiv.symm (e : α ≃ β) : β ≃ α := ⟨e.invFun, e.toFun⟩
629
629
630
630
/-- See Note [custom simps projection] -/
631
- def Equiv.simps .invFun (e : α ≃ β) : β → α := e.symm
631
+ def Equiv.Simps .invFun (e : α ≃ β) : β → α := e.symm
632
632
633
633
initialize_simps_projections Equiv
634
634
@@ -660,7 +660,7 @@ instance : CoeFun (α ≃ β) (λ _ => α → β) := ⟨Equiv.toFun⟩
660
660
def Equiv.symm (e : α ≃ β) : β ≃ α := ⟨e.invFun, e.toFun⟩
661
661
662
662
/-- See Note [custom simps projection] -/
663
- def Equiv.simps .invFun {α : Type u} {β : Type v} (e : α ≃ β) : β → α := e.symm
663
+ def Equiv.Simps .invFun {α : Type u} {β : Type v} (e : α ≃ β) : β → α := e.symm
664
664
665
665
run_cmd liftTermElabM <| do
666
666
successIfFail (simpsGetRawProjections `FaultyUniverses.Equiv)
@@ -690,7 +690,7 @@ def Equiv.symm (e : α ≃ β) : β ≃ α := ⟨e.invFun, e.toFun⟩
690
690
691
691
/-- See Note [custom simps projection] -/
692
692
-- test: intentionally using different unvierse levels for Equiv.symm than for Equiv
693
- def Equiv.simps .invFun {α : Sort w} {β : Sort u} (e : α ≃ β) : β → α := e.symm
693
+ def Equiv.Simps .invFun {α : Sort w} {β : Sort u} (e : α ≃ β) : β → α := e.symm
694
694
695
695
-- check whether we can generate custom projections even if the universe names don't match
696
696
initialize_simps_projections Equiv
@@ -712,7 +712,7 @@ instance : CoeFun (α ≃ β) (λ _ => α → β) := ⟨Equiv.toFun⟩
712
712
def Equiv.symm (e : α ≃ β) : β ≃ α := ⟨e.invFun, e.toFun⟩
713
713
714
714
/-- See Note [custom simps projection] -/
715
- def Equiv.simps .symm_apply (e : α ≃ β) : β → α := e.symm
715
+ def Equiv.Simps .symm_apply (e : α ≃ β) : β → α := e.symm
716
716
717
717
initialize_simps_projections Equiv (toFun → apply, invFun → symm_apply)
718
718
@@ -752,7 +752,7 @@ instance : CoeFun (α ≃ β) (λ _ => α → β) := ⟨Equiv.toFun⟩
752
752
def Equiv.symm (e : α ≃ β) : β ≃ α := ⟨e.invFun, e.toFun⟩
753
753
754
754
/-- See Note [custom simps projection] -/
755
- def Equiv.simps .symm_apply (e : α ≃ β) : β → α := e.symm
755
+ def Equiv.Simps .symm_apply (e : α ≃ β) : β → α := e.symm
756
756
initialize_simps_projections Equiv (toFun → coe as_prefix, invFun → symm_apply)
757
757
758
758
run_cmd liftTermElabM <| do
@@ -999,8 +999,8 @@ def DecoratedEquiv.symm {α β : Sort _} (e : DecoratedEquiv α β) : DecoratedE
999
999
P_toFun := e.P_invFun
1000
1000
P_invFun := e.P_toFun }
1001
1001
1002
- def DecoratedEquiv.simps .apply {α β : Sort _} (e : DecoratedEquiv α β) : α → β := e
1003
- def DecoratedEquiv.simps .symm_apply {α β : Sort _} (e : DecoratedEquiv α β) : β → α := e.symm
1002
+ def DecoratedEquiv.Simps .apply {α β : Sort _} (e : DecoratedEquiv α β) : α → β := e
1003
+ def DecoratedEquiv.Simps .symm_apply {α β : Sort _} (e : DecoratedEquiv α β) : β → α := e.symm
1004
1004
1005
1005
initialize_simps_projections DecoratedEquiv
1006
1006
(toEquiv'_toFun → apply, toEquiv'_invFun → symm_apply, -toEquiv')
@@ -1052,8 +1052,8 @@ def FurtherDecoratedEquiv.symm {α β : Sort _} (e : FurtherDecoratedEquiv α β
1052
1052
Q_toFun := e.Q_invFun
1053
1053
Q_invFun := e.Q_toFun }
1054
1054
1055
- def FurtherDecoratedEquiv.simps .apply {α β : Sort _} (e : FurtherDecoratedEquiv α β) : α → β := e
1056
- def FurtherDecoratedEquiv.simps .symm_apply {α β : Sort _} (e : FurtherDecoratedEquiv α β) :
1055
+ def FurtherDecoratedEquiv.Simps .apply {α β : Sort _} (e : FurtherDecoratedEquiv α β) : α → β := e
1056
+ def FurtherDecoratedEquiv.Simps .symm_apply {α β : Sort _} (e : FurtherDecoratedEquiv α β) :
1057
1057
β → α := e.symm
1058
1058
1059
1059
initialize_simps_projections FurtherDecoratedEquiv
@@ -1091,8 +1091,8 @@ def OneMore.symm {α β : Sort _} (e : OneMore α β) :
1091
1091
OneMore β α :=
1092
1092
{ toFurtherDecoratedEquiv := e.toFurtherDecoratedEquiv.symm }
1093
1093
1094
- def OneMore.simps .apply {α β : Sort _} (e : OneMore α β) : α → β := e
1095
- def OneMore.simps .symm_apply {α β : Sort _} (e : OneMore α β) : β → α := e.symm
1094
+ def OneMore.Simps .apply {α β : Sort _} (e : OneMore α β) : α → β := e
1095
+ def OneMore.Simps .symm_apply {α β : Sort _} (e : OneMore α β) : β → α := e.symm
1096
1096
1097
1097
initialize_simps_projections OneMore
1098
1098
(toFurtherDecoratedEquiv_toDecoratedEquiv_toEquiv'_toFun → apply,
@@ -1137,7 +1137,7 @@ instance (M N : Type _) [AddMonoid M] [AddMonoid N] : CoeFun (M →+ N) (λ _ =>
1137
1137
class AddHomPlus [Add ι] [∀ i, AddCommMonoid (A i)] :=
1138
1138
(mul {i} : A i →+ A i)
1139
1139
1140
- def AddHomPlus.simps .apply [Add ι] [∀ i, AddCommMonoid (A i)] [AddHomPlus A] {i : ι} (x : A i) :
1140
+ def AddHomPlus.Simps .apply [Add ι] [∀ i, AddCommMonoid (A i)] [AddHomPlus A] {i : ι} (x : A i) :
1141
1141
A i :=
1142
1142
AddHomPlus.mul x
1143
1143
@@ -1146,7 +1146,7 @@ initialize_simps_projections AddHomPlus (mul_toZeroHom_toFun → apply, -mul)
1146
1146
class AddHomPlus2 [Add ι] :=
1147
1147
(mul {i j} : A i ≃ (A j ≃ A (i + j)))
1148
1148
1149
- def AddHomPlus2.simps .mul [Add ι] [AddHomPlus2 A] {i j : ι}
1149
+ def AddHomPlus2.Simps .mul [Add ι] [AddHomPlus2 A] {i j : ι}
1150
1150
(x : A i) (y : A j) : A (i + j) :=
1151
1151
AddHomPlus2.mul x y
1152
1152
0 commit comments