Skip to content

Commit 1bda3b4

Browse files
committed
feat(Topology/SubsetProperties): add Inducing.isCompact_preimage (#7290)
Simple generalisation of `ClosedEmbedding.isCompact_preimage`; its injectivity hypothesis was never used. Co-authored-by: grunweg <grunweg@posteo.de>
1 parent c881294 commit 1bda3b4

File tree

1 file changed

+9
-4
lines changed

1 file changed

+9
-4
lines changed

Mathlib/Topology/SubsetProperties.lean

Lines changed: 9 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -885,11 +885,16 @@ theorem Embedding.isCompact_iff_isCompact_image {f : α → β} (hf : Embedding
885885
hf.toInducing.isCompact_iff.symm
886886
#align embedding.is_compact_iff_is_compact_image Embedding.isCompact_iff_isCompact_image
887887

888+
/-- The preimage of a compact set under an inducing map is a compact set. -/
889+
theorem Inducing.isCompact_preimage {f : α → β} (hf : Inducing f) (hf' : IsClosed (range f))
890+
{K : Set β} (hK : IsCompact K) : IsCompact (f ⁻¹' K) := by
891+
replace hK := hK.inter_right hf'
892+
rwa [← hf.isCompact_iff, image_preimage_eq_inter_range]
893+
888894
/-- The preimage of a compact set under a closed embedding is a compact set. -/
889-
theorem ClosedEmbedding.isCompact_preimage {f : α → β} (hf : ClosedEmbedding f) {K : Set β}
890-
(hK : IsCompact K) : IsCompact (f ⁻¹' K) := by
891-
replace hK := hK.inter_right hf.closed_range
892-
rwa [← hf.toInducing.isCompact_iff, image_preimage_eq_inter_range]
895+
theorem ClosedEmbedding.isCompact_preimage {f : α → β} (hf : ClosedEmbedding f)
896+
{K : Set β} (hK : IsCompact K) : IsCompact (f ⁻¹' K) :=
897+
hf.toInducing.isCompact_preimage (hf.closed_range) hK
893898
#align closed_embedding.is_compact_preimage ClosedEmbedding.isCompact_preimage
894899

895900
/-- A closed embedding is proper, ie, inverse images of compact sets are contained in compacts.

0 commit comments

Comments
 (0)