File tree Expand file tree Collapse file tree 1 file changed +9
-4
lines changed Expand file tree Collapse file tree 1 file changed +9
-4
lines changed Original file line number Diff line number Diff line change @@ -885,11 +885,16 @@ theorem Embedding.isCompact_iff_isCompact_image {f : α → β} (hf : Embedding
885
885
hf.toInducing.isCompact_iff.symm
886
886
#align embedding.is_compact_iff_is_compact_image Embedding.isCompact_iff_isCompact_image
887
887
888
+ /-- The preimage of a compact set under an inducing map is a compact set. -/
889
+ theorem Inducing.isCompact_preimage {f : α → β} (hf : Inducing f) (hf' : IsClosed (range f))
890
+ {K : Set β} (hK : IsCompact K) : IsCompact (f ⁻¹' K) := by
891
+ replace hK := hK.inter_right hf'
892
+ rwa [← hf.isCompact_iff, image_preimage_eq_inter_range]
893
+
888
894
/-- The preimage of a compact set under a closed embedding is a compact set. -/
889
- theorem ClosedEmbedding.isCompact_preimage {f : α → β} (hf : ClosedEmbedding f) {K : Set β}
890
- (hK : IsCompact K) : IsCompact (f ⁻¹' K) := by
891
- replace hK := hK.inter_right hf.closed_range
892
- rwa [← hf.toInducing.isCompact_iff, image_preimage_eq_inter_range]
895
+ theorem ClosedEmbedding.isCompact_preimage {f : α → β} (hf : ClosedEmbedding f)
896
+ {K : Set β} (hK : IsCompact K) : IsCompact (f ⁻¹' K) :=
897
+ hf.toInducing.isCompact_preimage (hf.closed_range) hK
893
898
#align closed_embedding.is_compact_preimage ClosedEmbedding.isCompact_preimage
894
899
895
900
/-- A closed embedding is proper, ie, inverse images of compact sets are contained in compacts.
You can’t perform that action at this time.
0 commit comments