@@ -569,20 +569,20 @@ theorem _root_.Prod.snd_exp [CompleteSpace 𝔹] (x : 𝔸 × 𝔹) : (exp 𝕂
569
569
#align prod.snd_exp Prod.snd_exp
570
570
571
571
@[simp]
572
- theorem _root_.Pi.exp_apply {ι : Type *} {𝔸 : ι → Type *} [Fintype ι] [∀ i, NormedRing (𝔸 i)]
572
+ theorem _root_.Pi.exp_apply {ι : Type *} {𝔸 : ι → Type *} [Finite ι] [∀ i, NormedRing (𝔸 i)]
573
573
[∀ i, NormedAlgebra 𝕂 (𝔸 i)] [∀ i, CompleteSpace (𝔸 i)] (x : ∀ i, 𝔸 i) (i : ι) :
574
574
exp 𝕂 x i = exp 𝕂 (x i) :=
575
+ let ⟨_⟩ := nonempty_fintype ι
575
576
map_exp _ (Pi.evalRingHom 𝔸 i) (continuous_apply _) x
576
- -- porting note: Lean can now handle Π-types in type class inference!
577
577
#align pi.exp_apply Pi.exp_apply
578
578
579
- theorem _root_.Pi.exp_def {ι : Type *} {𝔸 : ι → Type *} [Fintype ι] [∀ i, NormedRing (𝔸 i)]
579
+ theorem _root_.Pi.exp_def {ι : Type *} {𝔸 : ι → Type *} [Finite ι] [∀ i, NormedRing (𝔸 i)]
580
580
[∀ i, NormedAlgebra 𝕂 (𝔸 i)] [∀ i, CompleteSpace (𝔸 i)] (x : ∀ i, 𝔸 i) :
581
581
exp 𝕂 x = fun i => exp 𝕂 (x i) :=
582
582
funext <| Pi.exp_apply 𝕂 x
583
583
#align pi.exp_def Pi.exp_def
584
584
585
- theorem _root_.Function.update_exp {ι : Type *} {𝔸 : ι → Type *} [Fintype ι] [DecidableEq ι]
585
+ theorem _root_.Function.update_exp {ι : Type *} {𝔸 : ι → Type *} [Finite ι] [DecidableEq ι]
586
586
[∀ i, NormedRing (𝔸 i)] [∀ i, NormedAlgebra 𝕂 (𝔸 i)] [∀ i, CompleteSpace (𝔸 i)] (x : ∀ i, 𝔸 i)
587
587
(j : ι) (xj : 𝔸 j) :
588
588
Function.update (exp 𝕂 x) j (exp 𝕂 xj) = exp 𝕂 (Function.update x j xj) := by
0 commit comments