@@ -138,12 +138,15 @@ lemma range_eq_image_or_of_mulSupport_subset {f : α → M} {k : Set α} (h : mu
138
138
grind
139
139
140
140
@[to_additive (attr := simp)]
141
- theorem mulSupport_one' : mulSupport (1 : α → M) = ∅ :=
141
+ theorem mulSupport_one : mulSupport (1 : α → M) = ∅ :=
142
142
mulSupport_eq_empty_iff.2 rfl
143
143
144
144
@[to_additive (attr := simp)]
145
- theorem mulSupport_one : (mulSupport fun _ : α => (1 : M)) = ∅ :=
146
- mulSupport_one'
145
+ theorem mulSupport_fun_one : (mulSupport fun _ : α => (1 : M)) = ∅ :=
146
+ mulSupport_one
147
+
148
+ @[deprecated (since := "2025-07-31")] alias support_zero' := support_zero
149
+ @[deprecated (since := "2025-07-31")] alias mulSupport_one' := mulSupport_one
147
150
148
151
@[to_additive]
149
152
theorem mulSupport_const {c : M} (hc : c ≠ 1 ) : (mulSupport fun _ : α => c) = Set.univ := by
@@ -179,16 +182,21 @@ theorem mulSupport_comp_eq_preimage (g : β → M) (f : α → β) :
179
182
mulSupport (g ∘ f) = f ⁻¹' mulSupport g :=
180
183
rfl
181
184
182
- @[to_additive support_prod_mk ]
183
- theorem mulSupport_prod_mk (f : α → M) (g : α → N) :
185
+ @[to_additive support_prodMk ]
186
+ theorem mulSupport_prodMk (f : α → M) (g : α → N) :
184
187
(mulSupport fun x => (f x, g x)) = mulSupport f ∪ mulSupport g :=
185
188
Set.ext fun x => by
186
189
simp only [mulSupport, not_and_or, mem_union, mem_setOf_eq, Prod.mk_eq_one, Ne]
187
190
188
- @[to_additive support_prod_mk ']
189
- theorem mulSupport_prod_mk ' (f : α → M × N) :
191
+ @[to_additive support_prodMk ']
192
+ theorem mulSupport_prodMk ' (f : α → M × N) :
190
193
mulSupport f = (mulSupport fun x => (f x).1 ) ∪ mulSupport fun x => (f x).2 := by
191
- simp only [← mulSupport_prod_mk]
194
+ simp only [← mulSupport_prodMk]
195
+
196
+ @[deprecated (since := "2025-07-31")] alias support_prod_mk := support_prodMk
197
+ @[deprecated (since := "2025-07-31")] alias mulSupport_prod_mk := mulSupport_prodMk
198
+ @[deprecated (since := "2025-07-31")] alias support_prod_mk' := support_prodMk'
199
+ @[deprecated (since := "2025-07-31")] alias mulSupport_prod_mk' := mulSupport_prodMk'
192
200
193
201
@[to_additive]
194
202
theorem mulSupport_along_fiber_subset (f : α × β → M) (a : α) :
@@ -201,22 +209,25 @@ theorem mulSupport_curry (f : α × β → M) :
201
209
simp [mulSupport, funext_iff, image]
202
210
203
211
@[to_additive]
204
- theorem mulSupport_curry' (f : α × β → M) :
212
+ theorem mulSupport_fun_curry (f : α × β → M) :
205
213
(mulSupport fun a b ↦ f (a, b)) = (mulSupport f).image Prod.fst :=
206
214
mulSupport_curry f
207
215
216
+ @[deprecated (since := "2025-07-31")] alias support_curry' := support_fun_curry
217
+ @[deprecated (since := "2025-07-31")] alias mulSupport_curry' := mulSupport_fun_curry
218
+
208
219
end One
209
220
210
221
@[to_additive]
211
222
theorem mulSupport_mul [MulOneClass M] (f g : α → M) :
212
- (mulSupport fun x => f x * g x) ⊆ mulSupport f ∪ mulSupport g :=
223
+ (mulSupport fun x ↦ f x * g x) ⊆ mulSupport f ∪ mulSupport g :=
213
224
mulSupport_binop_subset (· * ·) (one_mul _) f g
214
225
215
226
@[to_additive]
216
227
theorem mulSupport_pow [Monoid M] (f : α → M) (n : ℕ) :
217
228
(mulSupport fun x => f x ^ n) ⊆ mulSupport f := by
218
229
induction n with
219
- | zero => simp [pow_zero, mulSupport_one ]
230
+ | zero => simp [pow_zero]
220
231
| succ n hfn =>
221
232
simpa only [pow_succ'] using (mulSupport_mul f _).trans (union_subset Subset.rfl hfn)
222
233
@@ -225,12 +236,15 @@ section DivisionMonoid
225
236
variable [DivisionMonoid G] (f g : α → G)
226
237
227
238
@[to_additive (attr := simp)]
228
- theorem mulSupport_inv : (mulSupport fun x => (f x)⁻¹) = mulSupport f :=
239
+ theorem mulSupport_fun_inv : (mulSupport fun x => (f x)⁻¹) = mulSupport f :=
229
240
ext fun _ => inv_ne_one
230
241
231
242
@[to_additive (attr := simp)]
232
- theorem mulSupport_inv' : mulSupport f⁻¹ = mulSupport f :=
233
- mulSupport_inv f
243
+ theorem mulSupport_inv : mulSupport f⁻¹ = mulSupport f :=
244
+ mulSupport_fun_inv f
245
+
246
+ @[deprecated (since := "2025-07-31")] alias support_neg' := support_neg
247
+ @[deprecated (since := "2025-07-31")] alias mulSupport_inv' := mulSupport_inv
234
248
235
249
@[to_additive]
236
250
theorem mulSupport_mul_inv : (mulSupport fun x => f x * (g x)⁻¹) ⊆ mulSupport f ∪ mulSupport g :=
0 commit comments