Skip to content

Commit 1e919af

Browse files
committed
feat(Measure/Typeclasses): rename sFiniteSeq (#17423)
Moves: - MeasureTheory.*sFiniteSeq* -> MeasureTheory.*sfiniteSeq*
1 parent 808cf46 commit 1e919af

File tree

8 files changed

+64
-49
lines changed

8 files changed

+64
-49
lines changed

Mathlib/MeasureTheory/Constructions/Prod/Basic.lean

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,7 @@ theorem measurable_measure_prod_mk_left_finite [IsFiniteMeasure ν] {s : Set (α
163163
is a measurable function. -/
164164
theorem measurable_measure_prod_mk_left [SFinite ν] {s : Set (α × β)} (hs : MeasurableSet s) :
165165
Measurable fun x => ν (Prod.mk x ⁻¹' s) := by
166-
rw [← sum_sFiniteSeq ν]
166+
rw [← sum_sfiniteSeq ν]
167167
simp_rw [Measure.sum_apply_of_countable]
168168
exact Measurable.ennreal_tsum (fun i ↦ measurable_measure_prod_mk_left_finite hs)
169169

@@ -573,8 +573,8 @@ instance prod.instSFinite {α β : Type*} {_ : MeasurableSpace α} {μ : Measure
573573
[SFinite μ] {_ : MeasurableSpace β} {ν : Measure β} [SFinite ν] :
574574
SFinite (μ.prod ν) := by
575575
have : μ.prod ν =
576-
Measure.sum (fun (p : ℕ × ℕ) ↦ (sFiniteSeq μ p.1).prod (sFiniteSeq ν p.2)) := by
577-
conv_lhs => rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq ν]
576+
Measure.sum (fun (p : ℕ × ℕ) ↦ (sfiniteSeq μ p.1).prod (sfiniteSeq ν p.2)) := by
577+
conv_lhs => rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq ν]
578578
apply prod_sum
579579
rw [this]
580580
infer_instance
@@ -620,12 +620,12 @@ theorem prod_eq {μ : Measure α} [SigmaFinite μ] {ν : Measure β} [SigmaFinit
620620
variable [SFinite μ]
621621

622622
theorem prod_swap : map Prod.swap (μ.prod ν) = ν.prod μ := by
623-
have : sum (fun (i : ℕ × ℕ) ↦ map Prod.swap ((sFiniteSeq μ i.1).prod (sFiniteSeq ν i.2)))
624-
= sum (fun (i : ℕ × ℕ) ↦ map Prod.swap ((sFiniteSeq μ i.2).prod (sFiniteSeq ν i.1))) := by
623+
have : sum (fun (i : ℕ × ℕ) ↦ map Prod.swap ((sfiniteSeq μ i.1).prod (sfiniteSeq ν i.2)))
624+
= sum (fun (i : ℕ × ℕ) ↦ map Prod.swap ((sfiniteSeq μ i.2).prod (sfiniteSeq ν i.1))) := by
625625
ext s hs
626626
rw [sum_apply _ hs, sum_apply _ hs]
627627
exact ((Equiv.prodComm ℕ ℕ).tsum_eq _).symm
628-
rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq ν, prod_sum, prod_sum,
628+
rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq ν, prod_sum, prod_sum,
629629
map_sum measurable_swap.aemeasurable, this]
630630
congr 1
631631
ext1 i
@@ -687,19 +687,19 @@ lemma nullMeasurableSet_prod {s : Set α} {t : Set β} :
687687
theorem prodAssoc_prod [SFinite τ] :
688688
map MeasurableEquiv.prodAssoc ((μ.prod ν).prod τ) = μ.prod (ν.prod τ) := by
689689
have : sum (fun (p : ℕ × ℕ × ℕ) ↦
690-
(sFiniteSeq μ p.1).prod ((sFiniteSeq ν p.2.1).prod (sFiniteSeq τ p.2.2)))
690+
(sfiniteSeq μ p.1).prod ((sfiniteSeq ν p.2.1).prod (sfiniteSeq τ p.2.2)))
691691
= sum (fun (p : (ℕ × ℕ) × ℕ) ↦
692-
(sFiniteSeq μ p.1.1).prod ((sFiniteSeq ν p.1.2).prod (sFiniteSeq τ p.2))) := by
692+
(sfiniteSeq μ p.1.1).prod ((sfiniteSeq ν p.1.2).prod (sfiniteSeq τ p.2))) := by
693693
ext s hs
694694
rw [sum_apply _ hs, sum_apply _ hs, ← (Equiv.prodAssoc _ _ _).tsum_eq]
695695
simp only [Equiv.prodAssoc_apply]
696-
rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq ν, ← sum_sFiniteSeq τ, prod_sum, prod_sum,
696+
rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq ν, ← sum_sfiniteSeq τ, prod_sum, prod_sum,
697697
map_sum MeasurableEquiv.prodAssoc.measurable.aemeasurable, prod_sum, prod_sum, this]
698698
congr
699699
ext1 i
700700
refine (prod_eq_generateFrom generateFrom_measurableSet generateFrom_prod
701-
isPiSystem_measurableSet isPiSystem_prod ((sFiniteSeq μ i.1.1)).toFiniteSpanningSetsIn
702-
((sFiniteSeq ν i.1.2).toFiniteSpanningSetsIn.prod (sFiniteSeq τ i.2).toFiniteSpanningSetsIn)
701+
isPiSystem_measurableSet isPiSystem_prod ((sfiniteSeq μ i.1.1)).toFiniteSpanningSetsIn
702+
((sfiniteSeq ν i.1.2).toFiniteSpanningSetsIn.prod (sfiniteSeq τ i.2).toFiniteSpanningSetsIn)
703703
?_).symm
704704
rintro s hs _ ⟨t, ht, u, hu, rfl⟩; rw [mem_setOf_eq] at hs ht hu
705705
simp_rw [map_apply (MeasurableEquiv.measurable _) (hs.prod (ht.prod hu)),
@@ -710,7 +710,7 @@ theorem prodAssoc_prod [SFinite τ] :
710710

711711
theorem prod_restrict (s : Set α) (t : Set β) :
712712
(μ.restrict s).prod (ν.restrict t) = (μ.prod ν).restrict (s ×ˢ t) := by
713-
rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq ν, restrict_sum_of_countable, restrict_sum_of_countable,
713+
rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq ν, restrict_sum_of_countable, restrict_sum_of_countable,
714714
prod_sum, prod_sum, restrict_sum_of_countable]
715715
congr 1
716716
ext1 i
@@ -725,35 +725,35 @@ theorem restrict_prod_eq_prod_univ (s : Set α) :
725725

726726
theorem prod_dirac (y : β) : μ.prod (dirac y) = map (fun x => (x, y)) μ := by
727727
classical
728-
rw [← sum_sFiniteSeq μ, prod_sum_left, map_sum measurable_prod_mk_right.aemeasurable]
728+
rw [← sum_sfiniteSeq μ, prod_sum_left, map_sum measurable_prod_mk_right.aemeasurable]
729729
congr
730730
ext1 i
731731
refine prod_eq fun s t hs ht => ?_
732732
simp_rw [map_apply measurable_prod_mk_right (hs.prod ht), mk_preimage_prod_left_eq_if, measure_if,
733-
dirac_apply' _ ht, ← indicator_mul_right _ fun _ => sFiniteSeq μ i s, Pi.one_apply, mul_one]
733+
dirac_apply' _ ht, ← indicator_mul_right _ fun _ => sfiniteSeq μ i s, Pi.one_apply, mul_one]
734734

735735
theorem dirac_prod (x : α) : (dirac x).prod ν = map (Prod.mk x) ν := by
736736
classical
737-
rw [← sum_sFiniteSeq ν, prod_sum_right, map_sum measurable_prod_mk_left.aemeasurable]
737+
rw [← sum_sfiniteSeq ν, prod_sum_right, map_sum measurable_prod_mk_left.aemeasurable]
738738
congr
739739
ext1 i
740740
refine prod_eq fun s t hs ht => ?_
741741
simp_rw [map_apply measurable_prod_mk_left (hs.prod ht), mk_preimage_prod_right_eq_if, measure_if,
742-
dirac_apply' _ hs, ← indicator_mul_left _ _ fun _ => sFiniteSeq ν i t, Pi.one_apply, one_mul]
742+
dirac_apply' _ hs, ← indicator_mul_left _ _ fun _ => sfiniteSeq ν i t, Pi.one_apply, one_mul]
743743

744744
theorem dirac_prod_dirac {x : α} {y : β} : (dirac x).prod (dirac y) = dirac (x, y) := by
745745
rw [prod_dirac, map_dirac measurable_prod_mk_right]
746746

747747
theorem prod_add (ν' : Measure β) [SFinite ν'] : μ.prod (ν + ν') = μ.prod ν + μ.prod ν' := by
748-
simp_rw [← sum_sFiniteSeq ν, ← sum_sFiniteSeq ν', sum_add_sum, ← sum_sFiniteSeq μ, prod_sum,
748+
simp_rw [← sum_sfiniteSeq ν, ← sum_sfiniteSeq ν', sum_add_sum, ← sum_sfiniteSeq μ, prod_sum,
749749
sum_add_sum]
750750
congr
751751
ext1 i
752752
refine prod_eq fun s t _ _ => ?_
753753
simp_rw [add_apply, prod_prod, left_distrib]
754754

755755
theorem add_prod (μ' : Measure α) [SFinite μ'] : (μ + μ').prod ν = μ.prod ν + μ'.prod ν := by
756-
simp_rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq μ', sum_add_sum, ← sum_sFiniteSeq ν, prod_sum,
756+
simp_rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq μ', sum_add_sum, ← sum_sfiniteSeq ν, prod_sum,
757757
sum_add_sum]
758758
congr
759759
ext1 i
@@ -771,7 +771,7 @@ theorem prod_zero (μ : Measure α) : μ.prod (0 : Measure β) = 0 := by simp [M
771771
theorem map_prod_map {δ} [MeasurableSpace δ] {f : α → β} {g : γ → δ} (μa : Measure α)
772772
(μc : Measure γ) [SFinite μa] [SFinite μc] (hf : Measurable f) (hg : Measurable g) :
773773
(map f μa).prod (map g μc) = map (Prod.map f g) (μa.prod μc) := by
774-
simp_rw [← sum_sFiniteSeq μa, ← sum_sFiniteSeq μc, map_sum hf.aemeasurable,
774+
simp_rw [← sum_sfiniteSeq μa, ← sum_sfiniteSeq μc, map_sum hf.aemeasurable,
775775
map_sum hg.aemeasurable, prod_sum, map_sum (hf.prod_map hg).aemeasurable]
776776
congr
777777
ext1 i

Mathlib/MeasureTheory/Decomposition/Lebesgue.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -922,7 +922,7 @@ then the same is true for any s-finite measure. -/
922922
theorem HaveLebesgueDecomposition.sfinite_of_isFiniteMeasure [SFinite μ]
923923
(_h : ∀ (μ : Measure α) [IsFiniteMeasure μ], HaveLebesgueDecomposition μ ν) :
924924
HaveLebesgueDecomposition μ ν :=
925-
sum_sFiniteSeq μ ▸ sum_left _
925+
sum_sfiniteSeq μ ▸ sum_left _
926926

927927
attribute [local instance] haveLebesgueDecomposition_of_finiteMeasure
928928

Mathlib/MeasureTheory/Integral/Lebesgue.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1836,9 +1836,9 @@ theorem exists_measurable_le_forall_setLIntegral_eq [SFinite μ] (f : α → ℝ
18361836
· exact ⟨g, hgm, hgle, fun s ↦ (hleg s).antisymm (lintegral_mono hgle)⟩
18371837
-- Without loss of generality, `μ` is a finite measure.
18381838
wlog h : IsFiniteMeasure μ generalizing μ
1839-
· choose g hgm hgle hgint using fun n ↦ @this (sFiniteSeq μ n) _ inferInstance
1839+
· choose g hgm hgle hgint using fun n ↦ @this (sfiniteSeq μ n) _ inferInstance
18401840
refine ⟨fun x ↦ ⨆ n, g n x, measurable_iSup hgm, fun x ↦ iSup_le (hgle · x), fun s ↦ ?_⟩
1841-
rw [← sum_sFiniteSeq μ, Measure.restrict_sum_of_countable,
1841+
rw [← sum_sfiniteSeq μ, Measure.restrict_sum_of_countable,
18421842
lintegral_sum_measure, lintegral_sum_measure]
18431843
exact ENNReal.tsum_le_tsum fun n ↦ (hgint n s).trans (lintegral_mono fun x ↦ le_iSup (g · x) _)
18441844
-- According to `exists_measurable_le_lintegral_eq`, for any natural `n`

Mathlib/MeasureTheory/Measure/AEMeasurable.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -413,7 +413,7 @@ lemma map_sum {ι : Type*} {m : ι → Measure α} {f : α → β} (hf : AEMeasu
413413

414414
instance (μ : Measure α) (f : α → β) [SFinite μ] : SFinite (μ.map f) := by
415415
by_cases H : AEMeasurable f μ
416-
· rw [← sum_sFiniteSeq μ] at H ⊢
416+
· rw [← sum_sfiniteSeq μ] at H ⊢
417417
rw [map_sum H]
418418
infer_instance
419419
· rw [map_of_not_aemeasurable H]

Mathlib/MeasureTheory/Measure/Typeclasses.lean

Lines changed: 32 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -548,24 +548,36 @@ section SFinite
548548
class SFinite (μ : Measure α) : Prop where
549549
out' : ∃ m : ℕ → Measure α, (∀ n, IsFiniteMeasure (m n)) ∧ μ = Measure.sum m
550550

551-
/-- A sequence of finite measures such that `μ = sum (sFiniteSeq μ)` (see `sum_sFiniteSeq`). -/
552-
noncomputable
553-
def sFiniteSeq (μ : Measure α) [h : SFinite μ] : ℕ → Measure α := h.1.choose
551+
/-- A sequence of finite measures such that `μ = sum (sfiniteSeq μ)` (see `sum_sfiniteSeq`). -/
552+
noncomputable def sfiniteSeq (μ : Measure α) [h : SFinite μ] : ℕ → Measure α := h.1.choose
554553

555-
instance isFiniteMeasure_sFiniteSeq [h : SFinite μ] (n : ℕ) : IsFiniteMeasure (sFiniteSeq μ n) :=
554+
@[deprecated (since := "2024-10-11")] alias sFiniteSeq := sfiniteSeq
555+
556+
instance isFiniteMeasure_sfiniteSeq [h : SFinite μ] (n : ℕ) : IsFiniteMeasure (sfiniteSeq μ n) :=
556557
h.1.choose_spec.1 n
557558

558-
lemma sum_sFiniteSeq (μ : Measure α) [h : SFinite μ] : sum (sFiniteSeq μ) = μ :=
559+
set_option linter.deprecated false in
560+
@[deprecated (since := "2024-10-11")]
561+
instance isFiniteMeasure_sFiniteSeq [SFinite μ] (n : ℕ) : IsFiniteMeasure (sFiniteSeq μ n) :=
562+
isFiniteMeasure_sfiniteSeq n
563+
564+
lemma sum_sfiniteSeq (μ : Measure α) [h : SFinite μ] : sum (sfiniteSeq μ) = μ :=
559565
h.1.choose_spec.2.symm
560566

561-
lemma sFiniteSeq_le (μ : Measure α) [SFinite μ] (n : ℕ) : sFiniteSeq μ n ≤ μ :=
562-
(le_sum _ n).trans (sum_sFiniteSeq μ).le
567+
@[deprecated (since := "2024-10-11")] alias sum_sFiniteSeq := sum_sfiniteSeq
568+
569+
lemma sfiniteSeq_le (μ : Measure α) [SFinite μ] (n : ℕ) : sfiniteSeq μ n ≤ μ :=
570+
(le_sum _ n).trans (sum_sfiniteSeq μ).le
571+
572+
@[deprecated (since := "2024-10-11")] alias sFiniteSeq_le := sfiniteSeq_le
563573

564574
instance : SFinite (0 : Measure α) := ⟨fun _ ↦ 0, inferInstance, by rw [Measure.sum_zero]⟩
565575

566576
@[simp]
567-
lemma sFiniteSeq_zero (n : ℕ) : sFiniteSeq (0 : Measure α) n = 0 :=
568-
bot_unique <| sFiniteSeq_le _ _
577+
lemma sfiniteSeq_zero (n : ℕ) : sfiniteSeq (0 : Measure α) n = 0 :=
578+
bot_unique <| sfiniteSeq_le _ _
579+
580+
@[deprecated (since := "2024-10-11")] alias sFiniteSeq_zero := sfiniteSeq_zero
569581

570582
/-- A countable sum of finite measures is s-finite.
571583
This lemma is superseded by the instance below. -/
@@ -582,29 +594,29 @@ lemma sfinite_sum_of_countable [Countable ι]
582594

583595
instance [Countable ι] (m : ι → Measure α) [∀ n, SFinite (m n)] : SFinite (Measure.sum m) := by
584596
change SFinite (Measure.sum (fun i ↦ m i))
585-
simp_rw [← sum_sFiniteSeq (m _), Measure.sum_sum]
597+
simp_rw [← sum_sfiniteSeq (m _), Measure.sum_sum]
586598
apply sfinite_sum_of_countable
587599

588600
instance [SFinite μ] [SFinite ν] : SFinite (μ + ν) := by
589601
have : ∀ b : Bool, SFinite (cond b μ ν) := by simp [*]
590602
simpa using inferInstanceAs (SFinite (.sum (cond · μ ν)))
591603

592604
instance [SFinite μ] (s : Set α) : SFinite (μ.restrict s) :=
593-
fun n ↦ (sFiniteSeq μ n).restrict s, fun n ↦ inferInstance,
594-
by rw [← restrict_sum_of_countable, sum_sFiniteSeq]⟩
605+
fun n ↦ (sfiniteSeq μ n).restrict s, fun n ↦ inferInstance,
606+
by rw [← restrict_sum_of_countable, sum_sfiniteSeq]⟩
595607

596608
variable (μ) in
597609
/-- For an s-finite measure `μ`, there exists a finite measure `ν`
598610
such that each of `μ` and `ν` is absolutely continuous with respect to the other.
599611
-/
600612
theorem exists_isFiniteMeasure_absolutelyContinuous [SFinite μ] :
601613
∃ ν : Measure α, IsFiniteMeasure ν ∧ μ ≪ ν ∧ ν ≪ μ := by
602-
rcases ENNReal.exists_pos_tsum_mul_lt_of_countable top_ne_zero (sFiniteSeq μ · univ)
614+
rcases ENNReal.exists_pos_tsum_mul_lt_of_countable top_ne_zero (sfiniteSeq μ · univ)
603615
fun _ ↦ measure_ne_top _ _ with ⟨c, hc₀, hc⟩
604-
have {s : Set α} : sum (fun n ↦ c n • sFiniteSeq μ n) s = 0 ↔ μ s = 0 := by
605-
conv_rhs => rw [← sum_sFiniteSeq μ, sum_apply_of_countable]
616+
have {s : Set α} : sum (fun n ↦ c n • sfiniteSeq μ n) s = 0 ↔ μ s = 0 := by
617+
conv_rhs => rw [← sum_sfiniteSeq μ, sum_apply_of_countable]
606618
simp [(hc₀ _).ne']
607-
refine ⟨.sum fun n ↦ c n • sFiniteSeq μ n, ⟨?_⟩, fun _ ↦ this.1, fun _ ↦ this.2
619+
refine ⟨.sum fun n ↦ c n • sfiniteSeq μ n, ⟨?_⟩, fun _ ↦ this.1, fun _ ↦ this.2
608620
simpa [mul_comm] using hc
609621

610622
variable (μ) in
@@ -791,9 +803,9 @@ theorem countable_meas_pos_of_disjoint_iUnion₀ {ι : Type*} {_ : MeasurableSpa
791803
[SFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, NullMeasurableSet (As i) μ)
792804
(As_disj : Pairwise (AEDisjoint μ on As)) :
793805
Set.Countable { i : ι | 0 < μ (As i) } := by
794-
rw [← sum_sFiniteSeq μ] at As_disj As_mble ⊢
795-
have obs : { i : ι | 0 < sum (sFiniteSeq μ) (As i) }
796-
⊆ ⋃ n, { i : ι | 0 < sFiniteSeq μ n (As i) } := by
806+
rw [← sum_sfiniteSeq μ] at As_disj As_mble ⊢
807+
have obs : { i : ι | 0 < sum (sfiniteSeq μ) (As i) }
808+
⊆ ⋃ n, { i : ι | 0 < sfiniteSeq μ n (As i) } := by
797809
intro i hi
798810
by_contra con
799811
simp only [mem_iUnion, mem_setOf_eq, not_exists, not_lt, nonpos_iff_eq_zero] at *
@@ -939,7 +951,7 @@ This only holds when `μ` is s-finite -- for example for σ-finite measures. For
939951
this assumption (but requiring that `t` has finite measure), see `measure_toMeasurable_inter`. -/
940952
theorem measure_toMeasurable_inter_of_sFinite [SFinite μ] {s : Set α} (hs : MeasurableSet s)
941953
(t : Set α) : μ (toMeasurable μ t ∩ s) = μ (t ∩ s) :=
942-
measure_toMeasurable_inter_of_sum hs (fun _ ↦ measure_ne_top _ t) (sum_sFiniteSeq μ).symm
954+
measure_toMeasurable_inter_of_sum hs (fun _ ↦ measure_ne_top _ t) (sum_sfiniteSeq μ).symm
943955

944956
@[simp]
945957
theorem restrict_toMeasurable_of_sFinite [SFinite μ] (s : Set α) :

Mathlib/MeasureTheory/Measure/WithDensity.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -615,8 +615,8 @@ instance Measure.withDensity.instSFinite [SFinite μ] {f : α → ℝ≥0∞} :
615615
· rcases exists_measurable_le_withDensity_eq μ f with ⟨g, hgm, -, h⟩
616616
exact h ▸ this hgm
617617
wlog hμ : IsFiniteMeasure μ generalizing μ
618-
· rw [← sum_sFiniteSeq μ, withDensity_sum]
619-
have (n : ℕ) : SFinite ((sFiniteSeq μ n).withDensity f) := this inferInstance
618+
· rw [← sum_sfiniteSeq μ, withDensity_sum]
619+
have (n : ℕ) : SFinite ((sfiniteSeq μ n).withDensity f) := this inferInstance
620620
infer_instance
621621
set s := {x | f x = ∞}
622622
have hs : MeasurableSet s := hfm (measurableSet_singleton _)

Mathlib/MeasureTheory/Measure/WithDensityFinite.lean

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -100,9 +100,12 @@ instance [SFinite μ] [NeZero μ] : IsProbabilityMeasure μ.toFinite := by
100100
lemma absolutelyContinuous_toFinite (μ : Measure α) [SFinite μ] : μ ≪ μ.toFinite :=
101101
Measure.ae_le_iff_absolutelyContinuous.mp ae_toFinite.ge
102102

103-
lemma sFiniteSeq_absolutelyContinuous_toFinite (μ : Measure α) [SFinite μ] (n : ℕ) :
104-
sFiniteSeq μ n ≪ μ.toFinite :=
105-
(sFiniteSeq_le μ n).absolutelyContinuous.trans (absolutelyContinuous_toFinite μ)
103+
lemma sfiniteSeq_absolutelyContinuous_toFinite (μ : Measure α) [SFinite μ] (n : ℕ) :
104+
sfiniteSeq μ n ≪ μ.toFinite :=
105+
(sfiniteSeq_le μ n).absolutelyContinuous.trans (absolutelyContinuous_toFinite μ)
106+
107+
@[deprecated (since := "2024-10-11")]
108+
alias sFiniteSeq_absolutelyContinuous_toFinite := sfiniteSeq_absolutelyContinuous_toFinite
106109

107110
lemma toFinite_absolutelyContinuous (μ : Measure α) [SFinite μ] : μ.toFinite ≪ μ :=
108111
Measure.ae_le_iff_absolutelyContinuous.mp ae_toFinite.le

Mathlib/Probability/Kernel/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -124,7 +124,7 @@ instance const.instIsFiniteKernel {μβ : Measure β} [IsFiniteMeasure μβ] :
124124

125125
instance const.instIsSFiniteKernel {μβ : Measure β} [SFinite μβ] :
126126
IsSFiniteKernel (const α μβ) :=
127-
fun n ↦ const α (sFiniteSeq μβ n), fun n ↦ inferInstance, by rw [sum_const, sum_sFiniteSeq]⟩
127+
fun n ↦ const α (sfiniteSeq μβ n), fun n ↦ inferInstance, by rw [sum_const, sum_sfiniteSeq]⟩
128128

129129
instance const.instIsMarkovKernel {μβ : Measure β} [hμβ : IsProbabilityMeasure μβ] :
130130
IsMarkovKernel (const α μβ) :=

0 commit comments

Comments
 (0)