@@ -163,7 +163,7 @@ theorem measurable_measure_prod_mk_left_finite [IsFiniteMeasure ν] {s : Set (α
163
163
is a measurable function. -/
164
164
theorem measurable_measure_prod_mk_left [SFinite ν] {s : Set (α × β)} (hs : MeasurableSet s) :
165
165
Measurable fun x => ν (Prod.mk x ⁻¹' s) := by
166
- rw [← sum_sFiniteSeq ν]
166
+ rw [← sum_sfiniteSeq ν]
167
167
simp_rw [Measure.sum_apply_of_countable]
168
168
exact Measurable.ennreal_tsum (fun i ↦ measurable_measure_prod_mk_left_finite hs)
169
169
@@ -573,8 +573,8 @@ instance prod.instSFinite {α β : Type*} {_ : MeasurableSpace α} {μ : Measure
573
573
[SFinite μ] {_ : MeasurableSpace β} {ν : Measure β} [SFinite ν] :
574
574
SFinite (μ.prod ν) := by
575
575
have : μ.prod ν =
576
- Measure.sum (fun (p : ℕ × ℕ) ↦ (sFiniteSeq μ p.1 ).prod (sFiniteSeq ν p.2 )) := by
577
- conv_lhs => rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq ν]
576
+ Measure.sum (fun (p : ℕ × ℕ) ↦ (sfiniteSeq μ p.1 ).prod (sfiniteSeq ν p.2 )) := by
577
+ conv_lhs => rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq ν]
578
578
apply prod_sum
579
579
rw [this]
580
580
infer_instance
@@ -620,12 +620,12 @@ theorem prod_eq {μ : Measure α} [SigmaFinite μ] {ν : Measure β} [SigmaFinit
620
620
variable [SFinite μ]
621
621
622
622
theorem prod_swap : map Prod.swap (μ.prod ν) = ν.prod μ := by
623
- have : sum (fun (i : ℕ × ℕ) ↦ map Prod.swap ((sFiniteSeq μ i.1 ).prod (sFiniteSeq ν i.2 )))
624
- = sum (fun (i : ℕ × ℕ) ↦ map Prod.swap ((sFiniteSeq μ i.2 ).prod (sFiniteSeq ν i.1 ))) := by
623
+ have : sum (fun (i : ℕ × ℕ) ↦ map Prod.swap ((sfiniteSeq μ i.1 ).prod (sfiniteSeq ν i.2 )))
624
+ = sum (fun (i : ℕ × ℕ) ↦ map Prod.swap ((sfiniteSeq μ i.2 ).prod (sfiniteSeq ν i.1 ))) := by
625
625
ext s hs
626
626
rw [sum_apply _ hs, sum_apply _ hs]
627
627
exact ((Equiv.prodComm ℕ ℕ).tsum_eq _).symm
628
- rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq ν, prod_sum, prod_sum,
628
+ rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq ν, prod_sum, prod_sum,
629
629
map_sum measurable_swap.aemeasurable, this]
630
630
congr 1
631
631
ext1 i
@@ -687,19 +687,19 @@ lemma nullMeasurableSet_prod {s : Set α} {t : Set β} :
687
687
theorem prodAssoc_prod [SFinite τ] :
688
688
map MeasurableEquiv.prodAssoc ((μ.prod ν).prod τ) = μ.prod (ν.prod τ) := by
689
689
have : sum (fun (p : ℕ × ℕ × ℕ) ↦
690
- (sFiniteSeq μ p.1 ).prod ((sFiniteSeq ν p.2 .1 ).prod (sFiniteSeq τ p.2 .2 )))
690
+ (sfiniteSeq μ p.1 ).prod ((sfiniteSeq ν p.2 .1 ).prod (sfiniteSeq τ p.2 .2 )))
691
691
= sum (fun (p : (ℕ × ℕ) × ℕ) ↦
692
- (sFiniteSeq μ p.1 .1 ).prod ((sFiniteSeq ν p.1 .2 ).prod (sFiniteSeq τ p.2 ))) := by
692
+ (sfiniteSeq μ p.1 .1 ).prod ((sfiniteSeq ν p.1 .2 ).prod (sfiniteSeq τ p.2 ))) := by
693
693
ext s hs
694
694
rw [sum_apply _ hs, sum_apply _ hs, ← (Equiv.prodAssoc _ _ _).tsum_eq]
695
695
simp only [Equiv.prodAssoc_apply]
696
- rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq ν, ← sum_sFiniteSeq τ, prod_sum, prod_sum,
696
+ rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq ν, ← sum_sfiniteSeq τ, prod_sum, prod_sum,
697
697
map_sum MeasurableEquiv.prodAssoc.measurable.aemeasurable, prod_sum, prod_sum, this]
698
698
congr
699
699
ext1 i
700
700
refine (prod_eq_generateFrom generateFrom_measurableSet generateFrom_prod
701
- isPiSystem_measurableSet isPiSystem_prod ((sFiniteSeq μ i.1 .1 )).toFiniteSpanningSetsIn
702
- ((sFiniteSeq ν i.1 .2 ).toFiniteSpanningSetsIn.prod (sFiniteSeq τ i.2 ).toFiniteSpanningSetsIn)
701
+ isPiSystem_measurableSet isPiSystem_prod ((sfiniteSeq μ i.1 .1 )).toFiniteSpanningSetsIn
702
+ ((sfiniteSeq ν i.1 .2 ).toFiniteSpanningSetsIn.prod (sfiniteSeq τ i.2 ).toFiniteSpanningSetsIn)
703
703
?_).symm
704
704
rintro s hs _ ⟨t, ht, u, hu, rfl⟩; rw [mem_setOf_eq] at hs ht hu
705
705
simp_rw [map_apply (MeasurableEquiv.measurable _) (hs.prod (ht.prod hu)),
@@ -710,7 +710,7 @@ theorem prodAssoc_prod [SFinite τ] :
710
710
711
711
theorem prod_restrict (s : Set α) (t : Set β) :
712
712
(μ.restrict s).prod (ν.restrict t) = (μ.prod ν).restrict (s ×ˢ t) := by
713
- rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq ν, restrict_sum_of_countable, restrict_sum_of_countable,
713
+ rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq ν, restrict_sum_of_countable, restrict_sum_of_countable,
714
714
prod_sum, prod_sum, restrict_sum_of_countable]
715
715
congr 1
716
716
ext1 i
@@ -725,35 +725,35 @@ theorem restrict_prod_eq_prod_univ (s : Set α) :
725
725
726
726
theorem prod_dirac (y : β) : μ.prod (dirac y) = map (fun x => (x, y)) μ := by
727
727
classical
728
- rw [← sum_sFiniteSeq μ, prod_sum_left, map_sum measurable_prod_mk_right.aemeasurable]
728
+ rw [← sum_sfiniteSeq μ, prod_sum_left, map_sum measurable_prod_mk_right.aemeasurable]
729
729
congr
730
730
ext1 i
731
731
refine prod_eq fun s t hs ht => ?_
732
732
simp_rw [map_apply measurable_prod_mk_right (hs.prod ht), mk_preimage_prod_left_eq_if, measure_if,
733
- dirac_apply' _ ht, ← indicator_mul_right _ fun _ => sFiniteSeq μ i s, Pi.one_apply, mul_one]
733
+ dirac_apply' _ ht, ← indicator_mul_right _ fun _ => sfiniteSeq μ i s, Pi.one_apply, mul_one]
734
734
735
735
theorem dirac_prod (x : α) : (dirac x).prod ν = map (Prod.mk x) ν := by
736
736
classical
737
- rw [← sum_sFiniteSeq ν, prod_sum_right, map_sum measurable_prod_mk_left.aemeasurable]
737
+ rw [← sum_sfiniteSeq ν, prod_sum_right, map_sum measurable_prod_mk_left.aemeasurable]
738
738
congr
739
739
ext1 i
740
740
refine prod_eq fun s t hs ht => ?_
741
741
simp_rw [map_apply measurable_prod_mk_left (hs.prod ht), mk_preimage_prod_right_eq_if, measure_if,
742
- dirac_apply' _ hs, ← indicator_mul_left _ _ fun _ => sFiniteSeq ν i t, Pi.one_apply, one_mul]
742
+ dirac_apply' _ hs, ← indicator_mul_left _ _ fun _ => sfiniteSeq ν i t, Pi.one_apply, one_mul]
743
743
744
744
theorem dirac_prod_dirac {x : α} {y : β} : (dirac x).prod (dirac y) = dirac (x, y) := by
745
745
rw [prod_dirac, map_dirac measurable_prod_mk_right]
746
746
747
747
theorem prod_add (ν' : Measure β) [SFinite ν'] : μ.prod (ν + ν') = μ.prod ν + μ.prod ν' := by
748
- simp_rw [← sum_sFiniteSeq ν, ← sum_sFiniteSeq ν', sum_add_sum, ← sum_sFiniteSeq μ, prod_sum,
748
+ simp_rw [← sum_sfiniteSeq ν, ← sum_sfiniteSeq ν', sum_add_sum, ← sum_sfiniteSeq μ, prod_sum,
749
749
sum_add_sum]
750
750
congr
751
751
ext1 i
752
752
refine prod_eq fun s t _ _ => ?_
753
753
simp_rw [add_apply, prod_prod, left_distrib]
754
754
755
755
theorem add_prod (μ' : Measure α) [SFinite μ'] : (μ + μ').prod ν = μ.prod ν + μ'.prod ν := by
756
- simp_rw [← sum_sFiniteSeq μ, ← sum_sFiniteSeq μ', sum_add_sum, ← sum_sFiniteSeq ν, prod_sum,
756
+ simp_rw [← sum_sfiniteSeq μ, ← sum_sfiniteSeq μ', sum_add_sum, ← sum_sfiniteSeq ν, prod_sum,
757
757
sum_add_sum]
758
758
congr
759
759
ext1 i
@@ -771,7 +771,7 @@ theorem prod_zero (μ : Measure α) : μ.prod (0 : Measure β) = 0 := by simp [M
771
771
theorem map_prod_map {δ} [MeasurableSpace δ] {f : α → β} {g : γ → δ} (μa : Measure α)
772
772
(μc : Measure γ) [SFinite μa] [SFinite μc] (hf : Measurable f) (hg : Measurable g) :
773
773
(map f μa).prod (map g μc) = map (Prod.map f g) (μa.prod μc) := by
774
- simp_rw [← sum_sFiniteSeq μa, ← sum_sFiniteSeq μc, map_sum hf.aemeasurable,
774
+ simp_rw [← sum_sfiniteSeq μa, ← sum_sfiniteSeq μc, map_sum hf.aemeasurable,
775
775
map_sum hg.aemeasurable, prod_sum, map_sum (hf.prod_map hg).aemeasurable]
776
776
congr
777
777
ext1 i
0 commit comments