You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This adds four API lemmas that are useful for establishing Euler products:
```lean
@[simp] lemma hasSum_unique [Unique β] (f : β → α) : HasSum f (f default)
@[simp] lemma hasSum_singleton (m : β) (f : β → α) : HasSum (({m} : Set β).restrict f) (f m)
lemma tsum_setElem_eq_tsum_setElem_diff [T2Space α] {f : β → α} (s t : Set β) (hf₀ : ∀ b ∈ t, f b = 0) :
∑' a : s, f a = ∑' a : (s \ t : Set β), f a
lemma tsum_eq_tsum_diff_singleton {α β : Type*} [AddCommMonoid α] [TopologicalSpace α] [T2Space α]
{f : β → α} (s : Set β) (b : β) (hf₀ : f b = 0) :
∑' a : s, f a = ∑' a : (s \ {b} : Set β), f a
```
0 commit comments