@@ -9,8 +9,8 @@ import Mathlib.Topology.Category.CompactlyGenerated
9
9
10
10
# The adjunction between condensed sets and topological spaces
11
11
12
- This file defines the functor `condensedSetToTopCat : CondensedSet.{u} ⥤ TopCat.{u+ 1}` which is
13
- left adjoint to `topCatToCondensedSet : TopCat.{u+ 1} ⥤ CondensedSet.{u}`. We prove that the counit
12
+ This file defines the functor `condensedSetToTopCat : CondensedSet.{u} ⥤ TopCat.{u + 1}` which is
13
+ left adjoint to `topCatToCondensedSet : TopCat.{u + 1} ⥤ CondensedSet.{u}`. We prove that the counit
14
14
is bijective (but not in general an isomorphism) and conclude that the right adjoint is faithful.
15
15
16
16
The counit is an isomorphism for compactly generated spaces, and we conclude that the functor
@@ -26,7 +26,7 @@ variable (X : CondensedSet.{u})
26
26
/-- Auxiliary definition to define the topology on `X(*)` for a condensed set `X`. -/
27
27
private def CondensedSet.coinducingCoprod :
28
28
(Σ (i : (S : CompHaus.{u}) × X.val.obj ⟨S⟩), i.fst) → X.val.obj ⟨of PUnit⟩ :=
29
- fun ⟨⟨_, i⟩, s⟩ ↦ X.val.map ((of PUnit.{u+ 1 }).const s).op i
29
+ fun ⟨⟨_, i⟩, s⟩ ↦ X.val.map ((of PUnit.{u + 1 }).const s).op i
30
30
31
31
/-- Let `X` be a condensed set. We define a topology on `X(*)` as the quotient topology of
32
32
all the maps from compact Hausdorff `S` spaces to `X(*)`, corresponding to elements of `X(S)`.
@@ -35,7 +35,7 @@ local instance : TopologicalSpace (X.val.obj ⟨CompHaus.of PUnit⟩) :=
35
35
TopologicalSpace.coinduced (coinducingCoprod X) inferInstance
36
36
37
37
/-- The object part of the functor `CondensedSet ⥤ TopCat` -/
38
- abbrev CondensedSet.toTopCat : TopCat.{u+ 1 } := TopCat.of (X.val.obj ⟨of PUnit⟩)
38
+ abbrev CondensedSet.toTopCat : TopCat.{u + 1 } := TopCat.of (X.val.obj ⟨of PUnit⟩)
39
39
40
40
namespace CondensedSet
41
41
@@ -59,22 +59,23 @@ def toTopCatMap : X.toTopCat ⟶ Y.toTopCat :=
59
59
apply continuous_sigma
60
60
intro ⟨S, x⟩
61
61
simp only [Function.comp_apply, coinducingCoprod]
62
- rw [show (fun (a : S) ↦ f.val.app ⟨of PUnit⟩ (X.val.map ((of PUnit.{u+1 }).const a).op x)) = _
63
- from funext fun a ↦ NatTrans.naturality_apply f.val ((of PUnit.{u+1 }).const a).op x]
62
+ rw [show (fun (a : S) ↦
63
+ f.val.app ⟨of PUnit⟩ (X.val.map ((of PUnit.{u + 1 }).const a).op x)) = _
64
+ from funext fun a ↦ NatTrans.naturality_apply f.val ((of PUnit.{u + 1 }).const a).op x]
64
65
exact continuous_coinducingCoprod Y _ }
65
66
66
67
end CondensedSet
67
68
68
69
/-- The functor `CondensedSet ⥤ TopCat` -/
69
70
@[simps]
70
- def condensedSetToTopCat : CondensedSet.{u} ⥤ TopCat.{u+ 1 } where
71
+ def condensedSetToTopCat : CondensedSet.{u} ⥤ TopCat.{u + 1 } where
71
72
obj X := X.toTopCat
72
73
map f := toTopCatMap f
73
74
74
75
namespace CondensedSet
75
76
76
77
/-- The counit of the adjunction `condensedSetToTopCat ⊣ topCatToCondensedSet` -/
77
- def topCatAdjunctionCounit (X : TopCat.{u+ 1 }) : X.toCondensedSet.toTopCat ⟶ X :=
78
+ def topCatAdjunctionCounit (X : TopCat.{u + 1 }) : X.toCondensedSet.toTopCat ⟶ X :=
78
79
TopCat.ofHom
79
80
{ toFun x := x.1 PUnit.unit
80
81
continuous_toFun := by
@@ -92,13 +93,13 @@ def topCatAdjunctionCounit (X : TopCat.{u+1}) : X.toCondensedSet.toTopCat ⟶ X
92
93
/-- The counit of the adjunction `condensedSetToTopCat ⊣ topCatToCondensedSet` is always bijective,
93
94
but not an isomorphism in general (the inverse isn't continuous unless `X` is compactly generated).
94
95
-/
95
- def topCatAdjunctionCounitEquiv (X : TopCat.{u+ 1 }) : X.toCondensedSet.toTopCat ≃ X where
96
+ def topCatAdjunctionCounitEquiv (X : TopCat.{u + 1 }) : X.toCondensedSet.toTopCat ≃ X where
96
97
toFun := topCatAdjunctionCounit X
97
98
invFun x := ContinuousMap.const _ x
98
99
left_inv _ := rfl
99
100
right_inv _ := rfl
100
101
101
- lemma topCatAdjunctionCounit_bijective (X : TopCat.{u+ 1 }) :
102
+ lemma topCatAdjunctionCounit_bijective (X : TopCat.{u + 1 }) :
102
103
Function.Bijective (topCatAdjunctionCounit X) :=
103
104
(topCatAdjunctionCounitEquiv X).bijective
104
105
@@ -107,7 +108,7 @@ lemma topCatAdjunctionCounit_bijective (X : TopCat.{u+1}) :
107
108
def topCatAdjunctionUnit (X : CondensedSet.{u}) : X ⟶ X.toTopCat.toCondensedSet where
108
109
val := {
109
110
app := fun S x ↦ {
110
- toFun := fun s ↦ X.val.map ((of PUnit.{u+ 1 }).const s).op x
111
+ toFun := fun s ↦ X.val.map ((of PUnit.{u + 1 }).const s).op x
111
112
continuous_toFun := by
112
113
suffices ∀ (i : (T : CompHaus.{u}) × X.val.obj ⟨T⟩),
113
114
Continuous (fun (a : i.fst) ↦ X.coinducingCoprod ⟨i, a⟩) from this ⟨_, _⟩
@@ -137,25 +138,26 @@ instance : topCatToCondensedSet.Faithful := topCatAdjunction.faithful_R_of_epi_c
137
138
138
139
open CompactlyGenerated
139
140
140
- instance (X : CondensedSet.{u}) : UCompactlyGeneratedSpace.{u, u+ 1 } X.toTopCat := by
141
+ instance (X : CondensedSet.{u}) : UCompactlyGeneratedSpace.{u, u + 1 } X.toTopCat := by
141
142
apply uCompactlyGeneratedSpace_of_continuous_maps
142
143
intro Y _ f h
143
144
rw [continuous_coinduced_dom, continuous_sigma_iff]
144
145
exact fun ⟨S, s⟩ ↦ h S ⟨_, continuous_coinducingCoprod X _⟩
145
146
146
- instance (X : CondensedSet.{u}) : UCompactlyGeneratedSpace.{u, u+1 } (condensedSetToTopCat.obj X) :=
147
- inferInstanceAs (UCompactlyGeneratedSpace.{u, u+1 } X.toTopCat)
147
+ instance (X : CondensedSet.{u}) :
148
+ UCompactlyGeneratedSpace.{u, u + 1 } (condensedSetToTopCat.obj X) :=
149
+ inferInstanceAs (UCompactlyGeneratedSpace.{u, u + 1 } X.toTopCat)
148
150
149
151
/-- The functor from condensed sets to topological spaces lands in compactly generated spaces. -/
150
- def condensedSetToCompactlyGenerated : CondensedSet.{u} ⥤ CompactlyGenerated.{u, u+ 1 } where
152
+ def condensedSetToCompactlyGenerated : CondensedSet.{u} ⥤ CompactlyGenerated.{u, u + 1 } where
151
153
obj X := CompactlyGenerated.of (condensedSetToTopCat.obj X)
152
154
map f := toTopCatMap f
153
155
154
156
/--
155
157
The functor from topological spaces to condensed sets restricted to compactly generated spaces.
156
158
-/
157
159
noncomputable def compactlyGeneratedToCondensedSet :
158
- CompactlyGenerated.{u, u+ 1 } ⥤ CondensedSet.{u} :=
160
+ CompactlyGenerated.{u, u + 1 } ⥤ CondensedSet.{u} :=
159
161
compactlyGeneratedToTop ⋙ topCatToCondensedSet
160
162
161
163
0 commit comments