Skip to content

Commit 203067e

Browse files
committed
chore: whitespace adaptations (#24488)
Found by #24465.
1 parent e052dad commit 203067e

File tree

9 files changed

+30
-28
lines changed

9 files changed

+30
-28
lines changed

Mathlib/Algebra/Group/Pointwise/Finset/Basic.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1150,8 +1150,7 @@ See `card_le_card_mul_self'` for the version with right-cancellative multiplicat
11501150
-/
11511151
@[to_additive
11521152
"The size of `s + s` is at least the size of `s`, version with left-cancellative addition.
1153-
See `card_le_card_add_self'` for the version with right-cancellative addition."
1154-
]
1153+
See `card_le_card_add_self'` for the version with right-cancellative addition."]
11551154
theorem card_le_card_mul_self {s : Finset α} : #s ≤ #(s * s) := by
11561155
cases s.eq_empty_or_nonempty <;> simp [card_le_card_mul_left, *]
11571156

Mathlib/Algebra/Group/UniqueProds/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -604,7 +604,7 @@ open MulOpposite in
604604
multiplication is strictly monotone w.r.t. the first argument, then `G` has `TwoUniqueProds`. -/
605605
@[to_additive
606606
"This instance asserts that if `G` has a left-cancellative addition, a linear order, and
607-
addition is strictly monotone w.r.t. the first argument, then `G` has `TwoUniqueSums`." ]
607+
addition is strictly monotone w.r.t. the first argument, then `G` has `TwoUniqueSums`."]
608608
instance (priority := 100) of_covariant_left [IsLeftCancelMul G]
609609
[LinearOrder G] [MulRightStrictMono G] :
610610
TwoUniqueProds G :=

Mathlib/Algebra/Order/Floor/Defs.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -304,7 +304,7 @@ private theorem int_floor_nonneg_of_pos [Ring α] [LinearOrder α] [FloorRing α
304304
int_floor_nonneg ha.le
305305

306306
/-- Extension for the `positivity` tactic: `Int.floor` is nonnegative if its input is. -/
307-
@[positivity ⌊ _ ⌋]
307+
@[positivity ⌊_⌋]
308308
def evalIntFloor : PositivityExt where eval {u α} _zα _pα e := do
309309
match u, α, e with
310310
| 0, ~q(ℤ), ~q(@Int.floor $α' $ir $io $j $a) =>
@@ -323,7 +323,7 @@ private theorem nat_ceil_pos [Semiring α] [LinearOrder α] [FloorSemiring α] {
323323
Nat.ceil_pos.2
324324

325325
/-- Extension for the `positivity` tactic: `Nat.ceil` is positive if its input is. -/
326-
@[positivity ⌈ _ ⌉₊]
326+
@[positivity ⌈_⌉₊]
327327
def evalNatCeil : PositivityExt where eval {u α} _zα _pα e := do
328328
match u, α, e with
329329
| 0, ~q(ℕ), ~q(@Nat.ceil $α' $ir $io $j $a) =>
@@ -341,7 +341,7 @@ private theorem int_ceil_pos [Ring α] [LinearOrder α] [FloorRing α] {a : α}
341341
Int.ceil_pos.2
342342

343343
/-- Extension for the `positivity` tactic: `Int.ceil` is positive/nonnegative if its input is. -/
344-
@[positivity ⌈ _ ⌉]
344+
@[positivity ⌈_⌉]
345345
def evalIntCeil : PositivityExt where eval {u α} _zα _pα e := do
346346
match u, α, e with
347347
| 0, ~q(ℤ), ~q(@Int.ceil $α' $ir $io $j $a) =>

Mathlib/Analysis/Calculus/FDeriv/Basic.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -524,7 +524,8 @@ theorem HasFDerivWithinAt.of_not_accPt (h : ¬AccPt x (𝓟 s)) : HasFDerivWithi
524524
/-- If `x` is isolated in `s`, then `f` has any derivative at `x` within `s`,
525525
as this statement is empty. -/
526526
@[deprecated HasFDerivWithinAt.of_not_accPt (since := "2025-04-20")]
527-
theorem HasFDerivWithinAt.of_nhdsWithin_eq_bot (h : 𝓝[s\{x}] x = ⊥) : HasFDerivWithinAt f f' s x :=
527+
theorem HasFDerivWithinAt.of_nhdsWithin_eq_bot (h : 𝓝[s \ {x}] x = ⊥) :
528+
HasFDerivWithinAt f f' s x :=
528529
.of_not_accPt <| by rwa [accPt_principal_iff_nhdsWithin, not_neBot]
529530

530531
/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,

Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -441,7 +441,7 @@ irreducible_def eLpNormLESNormFDerivOneConst (p : ℝ) : ℝ≥0 :=
441441
compactly-supported function `u` on a normed space `E` of finite dimension `n ≥ 2`, equipped
442442
with Haar measure. Then the `Lᵖ` norm of `u`, where `p := n / (n - 1)`, is bounded above by
443443
a constant times the `L¹` norm of the Fréchet derivative of `u`. -/
444-
theorem eLpNorm_le_eLpNorm_fderiv_one {u : E → F} (hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u)
444+
theorem eLpNorm_le_eLpNorm_fderiv_one {u : E → F} (hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u)
445445
{p : ℝ≥0} (hp : NNReal.HolderConjugate (finrank ℝ E) p) :
446446
eLpNorm u p μ ≤ eLpNormLESNormFDerivOneConst μ p * eLpNorm (fderiv ℝ u) 1 μ := by
447447
have h0p : 0 < (p : ℝ) := hp.coe.symm.pos
@@ -468,7 +468,7 @@ the Fréchet derivative of `u`.
468468
469469
Note: The codomain of `u` needs to be a Hilbert space.
470470
-/
471-
theorem eLpNorm_le_eLpNorm_fderiv_of_eq_inner {u : E → F'}
471+
theorem eLpNorm_le_eLpNorm_fderiv_of_eq_inner {u : E → F'}
472472
(hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u)
473473
{p p' : ℝ≥0} (hp : 1 ≤ p) (hn : 0 < finrank ℝ E)
474474
(hp' : (p' : ℝ)⁻¹ = p⁻¹ - (finrank ℝ E : ℝ)⁻¹) :

Mathlib/CategoryTheory/Monoidal/Subcategory.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@ variable {P} {P' : ObjectProperty C} [P'.IsMonoidal] (h : P ≤ P')
126126

127127
/-- An inequality `P ≤ P'` between monoidal properties of objects induces
128128
a monoidal functor between full monoidal subcategories. -/
129-
instance : (ιOfLE h).Monoidal :=
129+
instance : (ιOfLE h).Monoidal :=
130130
Functor.CoreMonoidal.toMonoidal
131131
{ εIso := Iso.refl _
132132
μIso := fun _ _ ↦ Iso.refl _ }

Mathlib/Computability/Language.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -388,7 +388,7 @@ end Language
388388
/-- Symbols for use by all kinds of grammars. -/
389389
inductive Symbol (T N : Type*)
390390
/-- Terminal symbols (of the same type as the language) -/
391-
| terminal (t : T) : Symbol T N
391+
| terminal (t : T) : Symbol T N
392392
/-- Nonterminal symbols (must not be present when the word being generated is finalized) -/
393393
| nonterminal (n : N) : Symbol T N
394394
deriving

Mathlib/Condensed/TopCatAdjunction.lean

Lines changed: 18 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -9,8 +9,8 @@ import Mathlib.Topology.Category.CompactlyGenerated
99
1010
# The adjunction between condensed sets and topological spaces
1111
12-
This file defines the functor `condensedSetToTopCat : CondensedSet.{u} ⥤ TopCat.{u+1}` which is
13-
left adjoint to `topCatToCondensedSet : TopCat.{u+1} ⥤ CondensedSet.{u}`. We prove that the counit
12+
This file defines the functor `condensedSetToTopCat : CondensedSet.{u} ⥤ TopCat.{u + 1}` which is
13+
left adjoint to `topCatToCondensedSet : TopCat.{u + 1} ⥤ CondensedSet.{u}`. We prove that the counit
1414
is bijective (but not in general an isomorphism) and conclude that the right adjoint is faithful.
1515
1616
The counit is an isomorphism for compactly generated spaces, and we conclude that the functor
@@ -26,7 +26,7 @@ variable (X : CondensedSet.{u})
2626
/-- Auxiliary definition to define the topology on `X(*)` for a condensed set `X`. -/
2727
private def CondensedSet.coinducingCoprod :
2828
(Σ (i : (S : CompHaus.{u}) × X.val.obj ⟨S⟩), i.fst) → X.val.obj ⟨of PUnit⟩ :=
29-
fun ⟨⟨_, i⟩, s⟩ ↦ X.val.map ((of PUnit.{u+1}).const s).op i
29+
fun ⟨⟨_, i⟩, s⟩ ↦ X.val.map ((of PUnit.{u + 1}).const s).op i
3030

3131
/-- Let `X` be a condensed set. We define a topology on `X(*)` as the quotient topology of
3232
all the maps from compact Hausdorff `S` spaces to `X(*)`, corresponding to elements of `X(S)`.
@@ -35,7 +35,7 @@ local instance : TopologicalSpace (X.val.obj ⟨CompHaus.of PUnit⟩) :=
3535
TopologicalSpace.coinduced (coinducingCoprod X) inferInstance
3636

3737
/-- The object part of the functor `CondensedSet ⥤ TopCat` -/
38-
abbrev CondensedSet.toTopCat : TopCat.{u+1} := TopCat.of (X.val.obj ⟨of PUnit⟩)
38+
abbrev CondensedSet.toTopCat : TopCat.{u + 1} := TopCat.of (X.val.obj ⟨of PUnit⟩)
3939

4040
namespace CondensedSet
4141

@@ -59,22 +59,23 @@ def toTopCatMap : X.toTopCat ⟶ Y.toTopCat :=
5959
apply continuous_sigma
6060
intro ⟨S, x⟩
6161
simp only [Function.comp_apply, coinducingCoprod]
62-
rw [show (fun (a : S) ↦ f.val.app ⟨of PUnit⟩ (X.val.map ((of PUnit.{u+1}).const a).op x)) = _
63-
from funext fun a ↦ NatTrans.naturality_apply f.val ((of PUnit.{u+1}).const a).op x]
62+
rw [show (fun (a : S) ↦
63+
f.val.app ⟨of PUnit⟩ (X.val.map ((of PUnit.{u + 1}).const a).op x)) = _
64+
from funext fun a ↦ NatTrans.naturality_apply f.val ((of PUnit.{u + 1}).const a).op x]
6465
exact continuous_coinducingCoprod Y _ }
6566

6667
end CondensedSet
6768

6869
/-- The functor `CondensedSet ⥤ TopCat` -/
6970
@[simps]
70-
def condensedSetToTopCat : CondensedSet.{u} ⥤ TopCat.{u+1} where
71+
def condensedSetToTopCat : CondensedSet.{u} ⥤ TopCat.{u + 1} where
7172
obj X := X.toTopCat
7273
map f := toTopCatMap f
7374

7475
namespace CondensedSet
7576

7677
/-- The counit of the adjunction `condensedSetToTopCat ⊣ topCatToCondensedSet` -/
77-
def topCatAdjunctionCounit (X : TopCat.{u+1}) : X.toCondensedSet.toTopCat ⟶ X :=
78+
def topCatAdjunctionCounit (X : TopCat.{u + 1}) : X.toCondensedSet.toTopCat ⟶ X :=
7879
TopCat.ofHom
7980
{ toFun x := x.1 PUnit.unit
8081
continuous_toFun := by
@@ -92,13 +93,13 @@ def topCatAdjunctionCounit (X : TopCat.{u+1}) : X.toCondensedSet.toTopCat ⟶ X
9293
/-- The counit of the adjunction `condensedSetToTopCat ⊣ topCatToCondensedSet` is always bijective,
9394
but not an isomorphism in general (the inverse isn't continuous unless `X` is compactly generated).
9495
-/
95-
def topCatAdjunctionCounitEquiv (X : TopCat.{u+1}) : X.toCondensedSet.toTopCat ≃ X where
96+
def topCatAdjunctionCounitEquiv (X : TopCat.{u + 1}) : X.toCondensedSet.toTopCat ≃ X where
9697
toFun := topCatAdjunctionCounit X
9798
invFun x := ContinuousMap.const _ x
9899
left_inv _ := rfl
99100
right_inv _ := rfl
100101

101-
lemma topCatAdjunctionCounit_bijective (X : TopCat.{u+1}) :
102+
lemma topCatAdjunctionCounit_bijective (X : TopCat.{u + 1}) :
102103
Function.Bijective (topCatAdjunctionCounit X) :=
103104
(topCatAdjunctionCounitEquiv X).bijective
104105

@@ -107,7 +108,7 @@ lemma topCatAdjunctionCounit_bijective (X : TopCat.{u+1}) :
107108
def topCatAdjunctionUnit (X : CondensedSet.{u}) : X ⟶ X.toTopCat.toCondensedSet where
108109
val := {
109110
app := fun S x ↦ {
110-
toFun := fun s ↦ X.val.map ((of PUnit.{u+1}).const s).op x
111+
toFun := fun s ↦ X.val.map ((of PUnit.{u + 1}).const s).op x
111112
continuous_toFun := by
112113
suffices ∀ (i : (T : CompHaus.{u}) × X.val.obj ⟨T⟩),
113114
Continuous (fun (a : i.fst) ↦ X.coinducingCoprod ⟨i, a⟩) from this ⟨_, _⟩
@@ -137,25 +138,26 @@ instance : topCatToCondensedSet.Faithful := topCatAdjunction.faithful_R_of_epi_c
137138

138139
open CompactlyGenerated
139140

140-
instance (X : CondensedSet.{u}) : UCompactlyGeneratedSpace.{u, u+1} X.toTopCat := by
141+
instance (X : CondensedSet.{u}) : UCompactlyGeneratedSpace.{u, u + 1} X.toTopCat := by
141142
apply uCompactlyGeneratedSpace_of_continuous_maps
142143
intro Y _ f h
143144
rw [continuous_coinduced_dom, continuous_sigma_iff]
144145
exact fun ⟨S, s⟩ ↦ h S ⟨_, continuous_coinducingCoprod X _⟩
145146

146-
instance (X : CondensedSet.{u}) : UCompactlyGeneratedSpace.{u, u+1} (condensedSetToTopCat.obj X) :=
147-
inferInstanceAs (UCompactlyGeneratedSpace.{u, u+1} X.toTopCat)
147+
instance (X : CondensedSet.{u}) :
148+
UCompactlyGeneratedSpace.{u, u + 1} (condensedSetToTopCat.obj X) :=
149+
inferInstanceAs (UCompactlyGeneratedSpace.{u, u + 1} X.toTopCat)
148150

149151
/-- The functor from condensed sets to topological spaces lands in compactly generated spaces. -/
150-
def condensedSetToCompactlyGenerated : CondensedSet.{u} ⥤ CompactlyGenerated.{u, u+1} where
152+
def condensedSetToCompactlyGenerated : CondensedSet.{u} ⥤ CompactlyGenerated.{u, u + 1} where
151153
obj X := CompactlyGenerated.of (condensedSetToTopCat.obj X)
152154
map f := toTopCatMap f
153155

154156
/--
155157
The functor from topological spaces to condensed sets restricted to compactly generated spaces.
156158
-/
157159
noncomputable def compactlyGeneratedToCondensedSet :
158-
CompactlyGenerated.{u, u+1} ⥤ CondensedSet.{u} :=
160+
CompactlyGenerated.{u, u + 1} ⥤ CondensedSet.{u} :=
159161
compactlyGeneratedToTop ⋙ topCatToCondensedSet
160162

161163

Mathlib/RingTheory/Ideal/IsPrincipalPowQuotient.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -77,7 +77,7 @@ typeclass synthesis issues on complex `Module` goals. To convert into a form
7777
that uses the ideal of `R ⧸ I ^ (n + 1)`, compose with
7878
`Ideal.powQuotPowSuccEquivMapMkPowSuccPow`. -/
7979
noncomputable
80-
def quotEquivPowQuotPowSuccEquiv (h : I.IsPrincipal) (h': I ≠ ⊥) (n : ℕ) :
80+
def quotEquivPowQuotPowSuccEquiv (h : I.IsPrincipal) (h' : I ≠ ⊥) (n : ℕ) :
8181
(R ⧸ I) ≃ (I ^ n : Ideal R) ⧸ (I • ⊤ : Submodule R (I ^ n : Ideal R)) :=
8282
quotEquivPowQuotPowSucc h h' n
8383

0 commit comments

Comments
 (0)