@@ -445,33 +445,33 @@ theorem map_div_atTop_eq_nat (k : ℕ) (hk : 0 < k) : map (fun a => a / k) atTop
445
445
(fun a b _ => by rw [Nat.div_le_iff_le_mul_add_pred hk])
446
446
fun b _ => by rw [Nat.mul_add_div hk, Nat.div_eq_of_lt, Nat.add_zero]; omega
447
447
448
- section IsDirected
449
- variable [Nonempty α] [Preorder α] [IsDirected α (· ≤ ·)] [Preorder β ] {f : α → β}
448
+ section NeBot
449
+ variable [Preorder β] {l : Filter α} [NeBot l ] {f : α → β}
450
450
451
- theorem unbounded_of_tendsto_atTop [NoMaxOrder β] (h : Tendsto f atTop atTop) :
451
+ theorem not_bddAbove_of_tendsto_atTop [NoMaxOrder β] (h : Tendsto f l atTop) :
452
452
¬BddAbove (range f) := by
453
453
rintro ⟨M, hM⟩
454
- obtain ⟨a, ha⟩ := mem_atTop_sets.mp (h <| Ioi_mem_atTop M)
455
- apply lt_irrefl M
456
- calc
457
- M < f a := ha a le_rfl
458
- _ ≤ M := hM (Set.mem_range_self a)
454
+ have : ∀ x, f x ≤ M := by aesop
455
+ have : ∅ = f ⁻¹' Ioi M := by aesop (add forward safe not_le_of_lt)
456
+ apply Filter.empty_not_mem l
457
+ aesop (add safe Ioi_mem_atTop)
459
458
460
- theorem unbounded_of_tendsto_atBot [NoMinOrder β] (h : Tendsto f atTop atBot) :
461
- ¬BddBelow (range f) := unbounded_of_tendsto_atTop (β := βᵒᵈ) h
459
+ theorem not_bddBelow_of_tendsto_atBot [NoMinOrder β] (h : Tendsto f l atBot) :
460
+ ¬BddBelow (range f) := not_bddAbove_of_tendsto_atTop (β := βᵒᵈ) h
462
461
463
- end IsDirected
462
+ @[deprecated (since := "2025-04-28")]
463
+ alias unbounded_of_tendsto_atTop := not_bddAbove_of_tendsto_atTop
464
464
465
- section IsCodirected
466
- variable [Nonempty α] [Preorder α] [IsDirected α (· ≥ ·)] [Preorder β] {f : α → β}
465
+ @[deprecated (since := "2025-04-28")]
466
+ alias unbounded_of_tendsto_atBot := not_bddBelow_of_tendsto_atBot
467
467
468
- theorem unbounded_of_tendsto_atTop' [NoMaxOrder β] (h : Tendsto f atBot atTop) :
469
- ¬BddAbove (range f) := unbounded_of_tendsto_atTop (α := αᵒᵈ) h
468
+ @[deprecated (since := "2025-04-28")]
469
+ alias unbounded_of_tendsto_atTop' := not_bddAbove_of_tendsto_atTop
470
470
471
- theorem unbounded_of_tendsto_atBot' [NoMinOrder β] (h : Tendsto f atBot atBot) :
472
- ¬BddBelow (range f) := unbounded_of_tendsto_atTop (α := αᵒᵈ) (β := βᵒᵈ) h
471
+ @[deprecated (since := "2025-04-28")]
472
+ alias unbounded_of_tendsto_atBot' := not_bddBelow_of_tendsto_atBot
473
473
474
- end IsCodirected
474
+ end NeBot
475
475
476
476
theorem HasAntitoneBasis.eventually_subset [Preorder ι] {l : Filter α} {s : ι → Set α}
477
477
(hl : l.HasAntitoneBasis s) {t : Set α} (ht : t ∈ l) : ∀ᶠ i in atTop, s i ⊆ t :=
0 commit comments