|
| 1 | +/- |
| 2 | +Copyright (c) 2024 Lean FRO LLC. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Kim Morrison |
| 5 | +-/ |
| 6 | +import Mathlib.CategoryTheory.Monoidal.Comon_ |
| 7 | + |
| 8 | +/-! |
| 9 | +# The category of bimonoids in a braided monoidal category. |
| 10 | +
|
| 11 | +We define bimonoids in a braided monoidal category `C` |
| 12 | +as comonoid objects in the category of monoid objects in `C`. |
| 13 | +
|
| 14 | +We verify that this is equivalent to the monoid objects in the category of comonoid objects. |
| 15 | +
|
| 16 | +## TODO |
| 17 | +* Define Hopf monoids, which in a cartesian monoidal category are exactly group objects, |
| 18 | + and use this to define group schemes. |
| 19 | +* Construct the category of modules, and show that it is monoidal with a monoidal forgetful functor |
| 20 | + to `C`. |
| 21 | +* Some form of Tannaka reconstruction: |
| 22 | + given a monoidal functor `F : C ⥤ D` into a braided category `D`, |
| 23 | + the internal endomorphisms of `F` form a bimonoid in presheaves on `D`, |
| 24 | + in good circumstances this is representable by a bimonoid in `D`, and then |
| 25 | + `C` is monoidally equivalent to the modules over that bimonoid. |
| 26 | +-/ |
| 27 | + |
| 28 | +noncomputable section |
| 29 | + |
| 30 | +universe v₁ v₂ u₁ u₂ u |
| 31 | + |
| 32 | +open CategoryTheory MonoidalCategory |
| 33 | + |
| 34 | +variable (C : Type u₁) [Category.{v₁} C] [MonoidalCategory.{v₁} C] [BraidedCategory C] |
| 35 | + |
| 36 | +/-- |
| 37 | +A bimonoid object in a braided category `C` is a comonoid object in the (monoidal) |
| 38 | +category of monoid objects in `C`. |
| 39 | +-/ |
| 40 | +def Bimon_ := Comon_ (Mon_ C) |
| 41 | + |
| 42 | +namespace Bimon_ |
| 43 | + |
| 44 | +instance : Category (Bimon_ C) := inferInstanceAs (Category (Comon_ (Mon_ C))) |
| 45 | + |
| 46 | +@[ext] lemma ext {X Y : Bimon_ C} {f g : X ⟶ Y} (w : f.hom.hom = g.hom.hom) : f = g := |
| 47 | + Comon_.Hom.ext _ _ (Mon_.Hom.ext _ _ w) |
| 48 | + |
| 49 | +@[simp] theorem id_hom' (M : Bimon_ C) : Comon_.Hom.hom (𝟙 M) = 𝟙 M.X := rfl |
| 50 | + |
| 51 | +@[simp] |
| 52 | +theorem comp_hom' {M N K : Bimon_ C} (f : M ⟶ N) (g : N ⟶ K) : (f ≫ g).hom = f.hom ≫ g.hom := |
| 53 | + rfl |
| 54 | + |
| 55 | +/-- The forgetful functor from bimonoid objects to monoid objects. -/ |
| 56 | +abbrev toMon_ : Bimon_ C ⥤ Mon_ C := Comon_.forget (Mon_ C) |
| 57 | + |
| 58 | +/-- The forgetful functor from bimonoid objects to the underlying category. -/ |
| 59 | +def forget : Bimon_ C ⥤ C := toMon_ C ⋙ Mon_.forget C |
| 60 | + |
| 61 | +@[simp] |
| 62 | +theorem toMon_forget : toMon_ C ⋙ Mon_.forget C = forget C := rfl |
| 63 | + |
| 64 | +/-- The forgetful functor from bimonoid objects to comonoid objects. -/ |
| 65 | +@[simps!] |
| 66 | +def toComon_ : Bimon_ C ⥤ Comon_ C := (Mon_.forgetMonoidal C).toOplaxMonoidalFunctor.mapComon |
| 67 | + |
| 68 | +@[simp] |
| 69 | +theorem toComon_forget : toComon_ C ⋙ Comon_.forget C = forget C := rfl |
| 70 | + |
| 71 | +/-- The object level part of the forward direction of `Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)` -/ |
| 72 | +def toMon_Comon_obj (M : Bimon_ C) : Mon_ (Comon_ C) where |
| 73 | + X := (toComon_ C).obj M |
| 74 | + one := { hom := M.X.one } |
| 75 | + mul := |
| 76 | + { hom := M.X.mul, |
| 77 | + hom_comul := by dsimp; simp [tensor_μ] } |
| 78 | + |
| 79 | +attribute [simps] toMon_Comon_obj -- We add this after the fact to avoid a timeout. |
| 80 | + |
| 81 | +/-- The forward direction of `Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)` -/ |
| 82 | +@[simps] |
| 83 | +def toMon_Comon_ : Bimon_ C ⥤ Mon_ (Comon_ C) where |
| 84 | + obj := toMon_Comon_obj C |
| 85 | + map f := |
| 86 | + { hom := (toComon_ C).map f } |
| 87 | + |
| 88 | +/-- The object level part of the backward direction of `Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)` -/ |
| 89 | +@[simps] |
| 90 | +def ofMon_Comon_obj (M : Mon_ (Comon_ C)) : Bimon_ C where |
| 91 | + X := (Comon_.forgetMonoidal C).toLaxMonoidalFunctor.mapMon.obj M |
| 92 | + counit := { hom := M.X.counit } |
| 93 | + comul := |
| 94 | + { hom := M.X.comul, |
| 95 | + mul_hom := by dsimp; simp [tensor_μ] } |
| 96 | + |
| 97 | +/-- The backward direction of `Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)` -/ |
| 98 | +@[simps] |
| 99 | +def ofMon_Comon_ : Mon_ (Comon_ C) ⥤ Bimon_ C where |
| 100 | + obj := ofMon_Comon_obj C |
| 101 | + map f := |
| 102 | + { hom := (Comon_.forgetMonoidal C).toLaxMonoidalFunctor.mapMon.map f } |
| 103 | + |
| 104 | +/-- The equivalence `Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)` -/ |
| 105 | +def equivMon_Comon_ : Bimon_ C ≌ Mon_ (Comon_ C) where |
| 106 | + functor := toMon_Comon_ C |
| 107 | + inverse := ofMon_Comon_ C |
| 108 | + unitIso := NatIso.ofComponents (fun _ => Comon_.mkIso (Mon_.mkIso (Iso.refl _))) |
| 109 | + counitIso := NatIso.ofComponents (fun _ => Mon_.mkIso (Comon_.mkIso (Iso.refl _))) |
| 110 | + |
| 111 | +end Bimon_ |
0 commit comments