File tree Expand file tree Collapse file tree 2 files changed +25
-1
lines changed
Algebra/Category/FGModuleCat Expand file tree Collapse file tree 2 files changed +25
-1
lines changed Original file line number Diff line number Diff line change @@ -58,7 +58,7 @@ instance : CoeSort (FGModuleCat R) (Type u) :=
58
58
59
59
attribute [coe] FGModuleCat.carrier
60
60
61
- @[simp] lemma obj_carrier (M : FGModuleCat R) : M.obj.carrier = M.carrier := rfl
61
+ @[simp] lemma FGModuleCat. obj_carrier (M : FGModuleCat R) : M.obj.carrier = M.carrier := rfl
62
62
63
63
instance (M : FGModuleCat R) : AddCommGroup M := by
64
64
change AddCommGroup M.obj
@@ -88,6 +88,11 @@ section Ring
88
88
89
89
variable (R : Type u) [Ring R]
90
90
91
+ @[simp] lemma hom_comp (A B C : FGModuleCat R) (f : A ⟶ B) (g : B ⟶ C) :
92
+ (f ≫ g).hom = g.hom.comp f.hom := rfl
93
+
94
+ @[simp] lemma hom_id (A : FGModuleCat R) : (𝟙 A : A ⟶ A).hom = LinearMap.id := rfl
95
+
91
96
instance finite (V : FGModuleCat R) : Module.Finite R V :=
92
97
V.property
93
98
@@ -98,6 +103,10 @@ instance : Inhabited (FGModuleCat R) :=
98
103
abbrev of (V : Type u) [AddCommGroup V] [Module R V] [Module.Finite R V] : FGModuleCat R :=
99
104
⟨ModuleCat.of R V, by change Module.Finite R V; infer_instance⟩
100
105
106
+ @[simp]
107
+ lemma of_carrier (V : Type u) [AddCommGroup V] [Module R V] [Module.Finite R V] :
108
+ of R V = V := rfl
109
+
101
110
variable {R} in
102
111
/-- Lift a linear map between finitely generated modules to `FGModuleCat R`. -/
103
112
abbrev ofHom {V W : Type u} [AddCommGroup V] [Module R V] [Module.Finite R V]
Original file line number Diff line number Diff line change @@ -125,6 +125,21 @@ abbrev of {V : Type u} [AddCommGroup V] [Module R V] [Module.Finite R V]
125
125
(ρ : Representation R G V) : FDRep R G :=
126
126
⟨FGModuleCat.of R V, (ModuleCat.endRingEquiv _).symm.toMonoidHom.comp ρ⟩
127
127
128
+ /-- This lemma is about `FDRep.ρ`, instead of `Action.ρ` for `of_ρ`. -/
129
+ @[simp]
130
+ theorem of_ρ' {V : Type u} [AddCommGroup V] [Module R V] [Module.Finite R V] (ρ : G →* V →ₗ[R] V) :
131
+ (of ρ).ρ = ρ := rfl
132
+
133
+ @[simp]
134
+ theorem ρ_inv_self_apply {G : Type u} [Group G] {A : FDRep R G} (g : G) (x : A) :
135
+ A.ρ g⁻¹ (A.ρ g x) = x :=
136
+ show (A.ρ g⁻¹ * A.ρ g) x = x by rw [← map_mul, inv_mul_cancel, map_one, LinearMap.one_apply]
137
+
138
+ @[simp]
139
+ theorem ρ_self_inv_apply {G : Type u} [Group G] {A : FDRep R G} (g : G) (x : A) :
140
+ A.ρ g (A.ρ g⁻¹ x) = x :=
141
+ show (A.ρ g * A.ρ g⁻¹) x = x by rw [← map_mul, mul_inv_cancel, map_one, LinearMap.one_apply]
142
+
128
143
instance : HasForget₂ (FDRep R G) (Rep R G) where
129
144
forget₂ := (forget₂ (FGModuleCat R) (ModuleCat R)).mapAction G
130
145
You can’t perform that action at this time.
0 commit comments