Skip to content

Commit 21a397a

Browse files
committed
chore(CategoryTheory/Sites): rename Presieve.isSeparated_of_isSheaf -> Presieve.IsSheaf.isSeparated (#29088)
Rename `Presieve.isSeparated_of_isSheaf` to `Presieve.IsSheaf.isSeparated` to enable dot notation. I've also made the arguments `J` and `P` implicit, since they can be inferred from `h : IsSheaf J P`. Co-authored-by: Ben Eltschig <b.eltschig@protonmail.com>
1 parent b3e1029 commit 21a397a

File tree

7 files changed

+12
-12
lines changed

7 files changed

+12
-12
lines changed

Mathlib/CategoryTheory/Sites/CoverPreserving.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -165,8 +165,7 @@ lemma Functor.isContinuous_of_coverPreserving (hF₁ : CompatiblePreserving.{w}
165165
fun V f hf => (H.isAmalgamation (hx.functorPushforward hF₁) (F.map f) _).trans
166166
(hF₁.apply_map _ hx hf)⟩
167167
· intro y₁ y₂ hy₁ hy₂
168-
apply (Presieve.isSeparated_of_isSheaf _ _ ((isSheaf_iff_isSheaf_of_type _ _).1 G.2) _
169-
(hF₂.cover_preserve hS)).ext
168+
apply (((isSheaf_iff_isSheaf_of_type _ _).1 G.2).isSeparated _ (hF₂.cover_preserve hS)).ext
170169
rintro Y _ ⟨Z, g, h, hg, rfl⟩
171170
dsimp
172171
simp only [Functor.map_comp, types_comp_apply]

Mathlib/CategoryTheory/Sites/CoversTop.lean

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -69,8 +69,7 @@ lemma sections_ext (F : Sheaf J (Type _)) {x y : F.1.sections}
6969
(h : ∀ (i : I), x.1 (Opposite.op (Y i)) = y.1 (Opposite.op (Y i))) :
7070
x = y := by
7171
ext W
72-
apply (Presieve.isSeparated_of_isSheaf J F.1
73-
((isSheaf_iff_isSheaf_of_type _ _).1 F.2) _ (hY W.unop)).ext
72+
apply (((isSheaf_iff_isSheaf_of_type _ _).1 F.2).isSeparated _ (hY W.unop)).ext
7473
rintro T a ⟨i, ⟨b⟩⟩
7574
simpa using congr_arg (F.1.map b.op) (h i)
7675

@@ -140,7 +139,7 @@ lemma existsUnique_section (hx : x.IsCompatible) (hY : J.CoversTop Y) (hF : IsSh
140139
refine ⟨⟨fun X => s X.unop, ?_⟩, fun i => (hs i (𝟙 (Y i))).trans (by simp)⟩
141140
rintro ⟨Y₁⟩ ⟨Y₂⟩ ⟨f : Y₂ ⟶ Y₁⟩
142141
change F.map f.op (s Y₁) = s Y₂
143-
apply (Presieve.isSeparated_of_isSheaf J F H _ (hY Y₂)).ext
142+
apply (H.isSeparated _ (hY Y₂)).ext
144143
rintro Z φ ⟨i, ⟨g⟩⟩
145144
rw [hs' φ i g, ← hs' (φ ≫ f) i g, op_comp, F.map_comp]
146145
rfl

Mathlib/CategoryTheory/Sites/LocallyBijective.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -62,8 +62,7 @@ private lemma isLocallyBijective_iff_isIso' :
6262
erw [← FunctorToTypes.map_comp_apply, ← FunctorToTypes.map_comp_apply]
6363
simp only [← op_comp, w]
6464
refine ⟨H.amalgamate t ht, ?_⟩
65-
· apply (Presieve.isSeparated_of_isSheaf _ _
66-
((isSheaf_iff_isSheaf_of_type J G.val).1 G.cond) _
65+
· apply (((isSheaf_iff_isSheaf_of_type J G.val).1 G.cond).isSeparated _
6766
(Presheaf.imageSieve_mem J f.val s)).ext
6867
intro Y g hg
6968
rw [← FunctorToTypes.naturality, H.valid_glue ht]

Mathlib/CategoryTheory/Sites/LocallyInjective.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -239,7 +239,7 @@ instance isLocallyInjective_forget [IsLocallyInjective φ] :
239239
lemma isLocallyInjective_iff_injective :
240240
IsLocallyInjective φ ↔ ∀ (X : Cᵒᵖ), Function.Injective (φ.val.app X) :=
241241
Presheaf.isLocallyInjective_iff_injective_of_separated _ _ (by
242-
apply Presieve.isSeparated_of_isSheaf
242+
apply Presieve.IsSheaf.isSeparated
243243
rw [← isSheaf_iff_isSheaf_of_type]
244244
exact ((sheafCompose J (forget D)).obj F₁).2)
245245

Mathlib/CategoryTheory/Sites/LocallySurjective.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -361,7 +361,7 @@ instance epi_of_isLocallySurjective' {F₁ F₂ : Sheaf J (Type w)} (φ : F₁
361361
[IsLocallySurjective φ] : Epi φ where
362362
left_cancellation {Z} f₁ f₂ h := by
363363
ext X x
364-
apply (Presieve.isSeparated_of_isSheaf J Z.1 ((isSheaf_iff_isSheaf_of_type _ _).1 Z.2) _
364+
apply (((isSheaf_iff_isSheaf_of_type _ _).1 Z.2).isSeparated _
365365
(Presheaf.imageSieve_mem J φ.val x)).ext
366366
rintro Y f ⟨s : F₁.val.obj (op Y), hs : φ.val.app _ s = F₂.val.map f.op x⟩
367367
dsimp

Mathlib/CategoryTheory/Sites/SheafOfTypes.lean

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -79,9 +79,12 @@ theorem IsSheaf.isSheafFor {P : Cᵒᵖ ⥤ Type w} (hp : IsSheaf J P) (R : Pres
7979
theorem isSheaf_of_le (P : Cᵒᵖ ⥤ Type w) {J₁ J₂ : GrothendieckTopology C} :
8080
J₁ ≤ J₂ → IsSheaf J₂ P → IsSheaf J₁ P := fun h t _ S hS => t S (h _ hS)
8181

82-
theorem isSeparated_of_isSheaf (P : Cᵒᵖ ⥤ Type w) (h : IsSheaf J P) : IsSeparated J P :=
82+
variable {J} in
83+
theorem IsSheaf.isSeparated {P : Cᵒᵖ ⥤ Type w} (h : IsSheaf J P) : IsSeparated J P :=
8384
fun S hS => (h S hS).isSeparatedFor
8485

86+
@[deprecated (since := "28-08-2025")] alias isSeparated_of_isSheaf := IsSheaf.isSeparated
87+
8588
section
8689

8790
variable {J} {P₁ : Cᵒᵖ ⥤ Type w} {P₂ : Cᵒᵖ ⥤ Type w'}

Mathlib/CategoryTheory/Sites/Whiskering.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -145,8 +145,8 @@ lemma Sheaf.isSeparated {FA : A → A → Type*} {CA : A → Type*}
145145
[∀ X Y, FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] [J.HasSheafCompose (forget A)]
146146
(F : Sheaf J A) : Presheaf.IsSeparated J F.val := by
147147
rintro X S hS x y h
148-
exact (Presieve.isSeparated_of_isSheaf _ _ ((isSheaf_iff_isSheaf_of_type _ _).1
149-
((sheafCompose J (forget A)).obj F).2) S hS).ext (fun _ _ hf => h _ _ hf)
148+
exact (((isSheaf_iff_isSheaf_of_type _ _).1
149+
((sheafCompose J (forget A)).obj F).2).isSeparated S hS).ext (fun _ _ hf => h _ _ hf)
150150

151151
lemma Presheaf.IsSheaf.isSeparated {F : Cᵒᵖ ⥤ A} {FA : A → A → Type*} {CA : A → Type*}
152152
[∀ X Y, FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA]

0 commit comments

Comments
 (0)