@@ -127,11 +127,11 @@ theorem LocallyConvexSpace.convex_open_basis_zero [LocallyConvexSpace 𝕜 E] :
127
127
interior_subset⟩)
128
128
fun s hs => ⟨s, ⟨hs.2 .1 .mem_nhds hs.1 , hs.2 .2 ⟩, subset_rfl⟩
129
129
130
- variable {𝕜 E}
130
+ variable {𝕜 E} [LocallyConvexSpace 𝕜 E] {s t : Set E} {x : E}
131
131
132
- /-- In a locally convex space, if `s`, `t` are disjoint convex sets, `s` is compact and `t` is
133
- closed, then we can find open disjoint convex sets containing them . -/
134
- theorem Disjoint.exists_open_convexes [LocallyConvexSpace 𝕜 E] {s t : Set E} (disj : Disjoint s t)
132
+ /-- In a locally convex space, every two disjoint convex sets such that one is compact and the other
133
+ is closed admit disjoint convex open neighborhoods . -/
134
+ theorem Disjoint.exists_open_convexes (disj : Disjoint s t)
135
135
(hs₁ : Convex 𝕜 s) (hs₂ : IsCompact s) (ht₁ : Convex 𝕜 t) (ht₂ : IsClosed t) :
136
136
∃ u v, IsOpen u ∧ IsOpen v ∧ Convex 𝕜 u ∧ Convex 𝕜 v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v := by
137
137
letI : UniformSpace E := IsTopologicalAddGroup.toUniformSpace E
@@ -145,6 +145,13 @@ theorem Disjoint.exists_open_convexes [LocallyConvexSpace 𝕜 E] {s t : Set E}
145
145
simp_rw [UniformSpace.ball, ← preimage_comp, sub_eq_neg_add] at hV
146
146
exact hV
147
147
148
+ /-- In a locally convex space, every point `x` and closed convex set `s ∌ x` admit disjoint convex
149
+ open neighborhoods. -/
150
+ lemma exists_open_convex_of_not_mem (hx : x ∉ s) (hsconv : Convex 𝕜 s) (hsclosed : IsClosed s) :
151
+ ∃ U V : Set E,
152
+ IsOpen U ∧ IsOpen V ∧ Convex 𝕜 U ∧ Convex 𝕜 V ∧ x ∈ U ∧ s ⊆ V ∧ Disjoint U V := by
153
+ simpa [*] using Disjoint.exists_open_convexes (s := {x}) (t := s) (𝕜 := 𝕜)
154
+
148
155
end LinearOrderedField
149
156
150
157
section LatticeOps
0 commit comments