Skip to content

Commit 22711cf

Browse files
committed
feat: special case of Disjoint.exists_open_convexes for a closed set and a singleton (#24259)
1 parent 69d3247 commit 22711cf

File tree

1 file changed

+11
-4
lines changed

1 file changed

+11
-4
lines changed

Mathlib/Topology/Algebra/Module/LocallyConvex.lean

Lines changed: 11 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -127,11 +127,11 @@ theorem LocallyConvexSpace.convex_open_basis_zero [LocallyConvexSpace 𝕜 E] :
127127
interior_subset⟩)
128128
fun s hs => ⟨s, ⟨hs.2.1.mem_nhds hs.1, hs.2.2⟩, subset_rfl⟩
129129

130-
variable {𝕜 E}
130+
variable {𝕜 E} [LocallyConvexSpace 𝕜 E] {s t : Set E} {x : E}
131131

132-
/-- In a locally convex space, if `s`, `t` are disjoint convex sets, `s` is compact and `t` is
133-
closed, then we can find open disjoint convex sets containing them. -/
134-
theorem Disjoint.exists_open_convexes [LocallyConvexSpace 𝕜 E] {s t : Set E} (disj : Disjoint s t)
132+
/-- In a locally convex space, every two disjoint convex sets such that one is compact and the other
133+
is closed admit disjoint convex open neighborhoods. -/
134+
theorem Disjoint.exists_open_convexes (disj : Disjoint s t)
135135
(hs₁ : Convex 𝕜 s) (hs₂ : IsCompact s) (ht₁ : Convex 𝕜 t) (ht₂ : IsClosed t) :
136136
∃ u v, IsOpen u ∧ IsOpen v ∧ Convex 𝕜 u ∧ Convex 𝕜 v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v := by
137137
letI : UniformSpace E := IsTopologicalAddGroup.toUniformSpace E
@@ -145,6 +145,13 @@ theorem Disjoint.exists_open_convexes [LocallyConvexSpace 𝕜 E] {s t : Set E}
145145
simp_rw [UniformSpace.ball, ← preimage_comp, sub_eq_neg_add] at hV
146146
exact hV
147147

148+
/-- In a locally convex space, every point `x` and closed convex set `s ∌ x` admit disjoint convex
149+
open neighborhoods. -/
150+
lemma exists_open_convex_of_not_mem (hx : x ∉ s) (hsconv : Convex 𝕜 s) (hsclosed : IsClosed s) :
151+
∃ U V : Set E,
152+
IsOpen U ∧ IsOpen V ∧ Convex 𝕜 U ∧ Convex 𝕜 V ∧ x ∈ U ∧ s ⊆ V ∧ Disjoint U V := by
153+
simpa [*] using Disjoint.exists_open_convexes (s := {x}) (t := s) (𝕜 := 𝕜)
154+
148155
end LinearOrderedField
149156

150157
section LatticeOps

0 commit comments

Comments
 (0)