Skip to content

Commit 23b849e

Browse files
committed
feat: generalize opNNNorm_le_of_unit_nnnorm to semilinear maps (#28014)
This also generalizes to complex-linear maps.
1 parent df9e1c1 commit 23b849e

File tree

2 files changed

+5
-5
lines changed

2 files changed

+5
-5
lines changed

Mathlib/Analysis/NormedSpace/OperatorNorm/Basic.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -245,12 +245,12 @@ theorem opNorm_le_of_shell' {f : E →SL[σ₁₂] F} {ε C : ℝ} (ε_pos : 0 <
245245

246246
/-- For a continuous real linear map `f`, if one controls the norm of every `f x`, `‖x‖ = 1`, then
247247
one controls the norm of `f`. -/
248-
theorem opNorm_le_of_unit_norm [NormedSpaceE] [NormedSpace ℝ F] {f : E →L[ℝ] F} {C : ℝ}
248+
theorem opNorm_le_of_unit_norm [NormedAlgebra𝕜] {f : E →SL[σ₁₂] F} {C : ℝ}
249249
(hC : 0 ≤ C) (hf : ∀ x, ‖x‖ = 1 → ‖f x‖ ≤ C) : ‖f‖ ≤ C := by
250250
refine opNorm_le_bound' f hC fun x hx => ?_
251-
have H₁ : ‖‖x‖⁻¹ • x‖ = 1 := by rw [norm_smul, norm_inv, norm_norm, inv_mul_cancel₀ hx]
252-
have H₂ := hf _ H₁
253-
rwa [map_smul, norm_smul, norm_inv, norm_norm, ← div_eq_inv_mul, div_le_iff₀] at H₂
251+
have H₁ : ‖algebraMap _ 𝕜 ‖x‖⁻¹ • x‖ = 1 := by simp [norm_smul, inv_mul_cancel₀ hx]
252+
have H₂ : ‖x‖⁻¹ * ‖f x‖ ≤ C := by simpa [norm_smul] using hf _ H₁
253+
rwa [← div_eq_inv_mul, div_le_iff₀] at H₂
254254
exact (norm_nonneg x).lt_of_ne' hx
255255

256256

Mathlib/Analysis/NormedSpace/OperatorNorm/NNNorm.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ theorem opNNNorm_le_bound' (f : E →SL[σ₁₂] F) (M : ℝ≥0) (hM : ∀ x,
5454

5555
/-- For a continuous real linear map `f`, if one controls the norm of every `f x`, `‖x‖₊ = 1`, then
5656
one controls the norm of `f`. -/
57-
theorem opNNNorm_le_of_unit_nnnorm [NormedSpaceE] [NormedSpace ℝ F] {f : E →L[ℝ] F} {C : ℝ≥0}
57+
theorem opNNNorm_le_of_unit_nnnorm [NormedAlgebra𝕜] {f : E →SL[σ₁₂] F} {C : ℝ≥0}
5858
(hf : ∀ x, ‖x‖₊ = 1 → ‖f x‖₊ ≤ C) : ‖f‖₊ ≤ C :=
5959
opNorm_le_of_unit_norm C.coe_nonneg fun x hx => hf x <| by rwa [← NNReal.coe_eq_one]
6060

0 commit comments

Comments
 (0)