@@ -628,38 +628,37 @@ theorem trans_toLinearMap (f : A₁ ≃ₐ[R] A₂) (g : A₂ ≃ₐ[R] A₃) :
628
628
629
629
section OfLinearEquiv
630
630
631
- variable (l : A₁ ≃ₗ[R] A₂) (map_mul : ∀ x y : A₁, l (x * y) = l x * l y)
632
- (commutes : ∀ r : R, l (algebraMap R A₁ r) = algebraMap R A₂ r)
631
+ variable (l : A₁ ≃ₗ[R] A₂) (map_one : l 1 = 1 ) (map_mul : ∀ x y : A₁, l (x * y) = l x * l y)
633
632
634
633
/-- Upgrade a linear equivalence to an algebra equivalence,
635
- given that it distributes over multiplication and action of scalars.
634
+ given that it distributes over multiplication and the identity
636
635
-/
637
636
@[simps apply]
638
637
def ofLinearEquiv : A₁ ≃ₐ[R] A₂ :=
639
638
{ l with
640
639
toFun := l
641
640
invFun := l.symm
642
641
map_mul' := map_mul
643
- commutes' := commutes }
644
- #align alg_equiv.of_linear_equiv AlgEquiv.ofLinearEquiv
642
+ commutes' := (AlgHom.ofLinearMap l map_one map_mul : A₁ →ₐ[R] A₂). commutes }
643
+ #align alg_equiv.of_linear_equiv AlgEquiv.ofLinearEquivₓ
645
644
646
645
@[simp]
647
646
theorem ofLinearEquiv_symm :
648
- (ofLinearEquiv l map_mul commutes ).symm =
649
- ofLinearEquiv l.symm (ofLinearEquiv l map_mul commutes ).symm.map_mul
650
- (ofLinearEquiv l map_mul commutes ).symm.commutes :=
647
+ (ofLinearEquiv l map_one map_mul ).symm =
648
+ ofLinearEquiv l.symm (ofLinearEquiv l map_one map_mul ).symm.map_one
649
+ (ofLinearEquiv l map_one map_mul ).symm.map_mul :=
651
650
rfl
652
651
#align alg_equiv.of_linear_equiv_symm AlgEquiv.ofLinearEquiv_symm
653
652
654
653
@[simp]
655
- theorem ofLinearEquiv_toLinearEquiv (map_mul) (commutes ) :
656
- ofLinearEquiv e.toLinearEquiv map_mul commutes = e := by
654
+ theorem ofLinearEquiv_toLinearEquiv (map_mul) (map_one ) :
655
+ ofLinearEquiv e.toLinearEquiv map_mul map_one = e := by
657
656
ext
658
657
rfl
659
658
#align alg_equiv.of_linear_equiv_to_linear_equiv AlgEquiv.ofLinearEquiv_toLinearEquiv
660
659
661
660
@[simp]
662
- theorem toLinearEquiv_ofLinearEquiv : toLinearEquiv (ofLinearEquiv l map_mul commutes ) = l := by
661
+ theorem toLinearEquiv_ofLinearEquiv : toLinearEquiv (ofLinearEquiv l map_one map_mul ) = l := by
663
662
ext
664
663
rfl
665
664
#align alg_equiv.to_linear_equiv_of_linear_equiv AlgEquiv.toLinearEquiv_ofLinearEquiv
0 commit comments