Skip to content

Commit 28e84a4

Browse files
committed
chore: remove #print and duplicated definitions (#1801)
1 parent 3041403 commit 28e84a4

File tree

1 file changed

+5
-66
lines changed

1 file changed

+5
-66
lines changed

Mathlib/Init/Data/Nat/GCD.lean

Lines changed: 5 additions & 66 deletions
Original file line numberDiff line numberDiff line change
@@ -24,81 +24,20 @@ namespace Nat
2424

2525
/-! gcd -/
2626

27-
28-
#print Nat.gcd /-
29-
def gcd : Nat → Nat → Nat
30-
| 0, y => y
31-
| succ x, y =>
32-
have : y % succ x < succ x := mod_lt _ <| succ_pos _
33-
gcd (y % succ x) (succ x)
3427
#align nat.gcd Nat.gcd
35-
-/
36-
37-
#print Nat.gcd_zero_left /-
38-
@[simp]
39-
theorem gcd_zero_left (x : Nat) : gcd 0 x = x := by simp [gcd]
4028
#align nat.gcd_zero_left Nat.gcd_zero_left
41-
-/
42-
43-
#print Nat.gcd_succ /-
44-
@[simp]
45-
theorem gcd_succ (x y : Nat) : gcd (succ x) y = gcd (y % succ x) (succ x) := by simp [gcd]
4629
#align nat.gcd_succ Nat.gcd_succ
47-
-/
48-
49-
#print Nat.gcd_one_left /-
50-
@[simp]
51-
theorem gcd_one_left (n : ℕ) : gcd 1 n = 1 := by simp [gcd]
5230
#align nat.gcd_one_left Nat.gcd_one_left
53-
-/
54-
55-
theorem gcd_def (x y : ℕ) : gcd x y = if x = 0 then y else gcd (y % x) x := by
56-
cases x <;> simp [Nat.gcd_succ]
57-
--<;> simp [gcd, succ_ne_zero]
58-
#align nat.gcd_def Nat.gcd_def
59-
60-
61-
#print Nat.gcd_self /-
62-
@[simp]
63-
theorem gcd_self (n : ℕ) : gcd n n = n := by cases n <;> simp [gcd, mod_self]
6431
#align nat.gcd_self Nat.gcd_self
65-
-/
66-
67-
#print Nat.gcd_zero_right /-
68-
@[simp]
69-
theorem gcd_zero_right (n : ℕ) : gcd n 0 = n := by cases n <;> simp [gcd]
7032
#align nat.gcd_zero_right Nat.gcd_zero_right
71-
-/
72-
73-
#print Nat.gcd_rec /-
74-
theorem gcd_rec (m n : ℕ) : gcd m n = gcd (n % m) m := by cases m <;> simp [gcd]
7533
#align nat.gcd_rec Nat.gcd_rec
76-
-/
77-
78-
#print Nat.gcd.induction /-
79-
@[elab_as_elim]
80-
theorem gcd.induction {P : ℕ → ℕ → Prop} (m n : ℕ) (H0 : ∀ n, P 0 n)
81-
(H1 : ∀ m n, 0 < m → P (n % m) m → P m n) : P m n :=
82-
@induction _ _ lt_wfRel (fun m => ∀ n, P m n) m
83-
(fun k IH => by
84-
induction' k with k ih
85-
exact H0
86-
exact fun n => H1 _ _ (succ_pos _) (IH _ (mod_lt _ (succ_pos _)) _))
87-
n
8834
#align nat.gcd.induction Nat.gcd.induction
89-
-/
90-
91-
#print Nat.lcm /-
92-
def lcm (m n : ℕ) : ℕ :=
93-
m * n / gcd m n
9435
#align nat.lcm Nat.lcm
95-
-/
9636

97-
/--`Coprime m n` is a proposition that means that `gcd m n = 1`.
98-
There is an identical version in `Std.Data.Nat.GCD`-/
99-
@[reducible]
100-
def Coprime (m n : ℕ) : Prop :=
101-
gcd m n = 1
102-
#align nat.coprime Nat.Coprime
37+
theorem gcd_def (x y : ℕ) : gcd x y = if x = 0 then y else gcd (y % x) x := by
38+
cases x <;> simp [Nat.gcd_succ]
39+
#align nat.gcd_def Nat.gcd_def
40+
41+
#align nat.coprime Nat.coprime
10342

10443
end Nat

0 commit comments

Comments
 (0)