Skip to content

Commit

Permalink
refactor(LinearAlgebra/ExteriorAlgebra/{Basic,Grading}): add a defini…
Browse files Browse the repository at this point in the history
…tion and notation for the exterior powers of a module (#10744)

This is split off from PR #10654 (that actually proves some properties of the exterior powers). It introduces the reducible definition `exteriorPower R n M` for the `n`th exterior power of the `R`-module `M`; this is of type `Submodule R (ExteriorAlgebra R M)` and defined as `LinearMap.range (ExteriorAlgebra.ι R : M →ₗ[R] ExteriorAlgebra R M) ^ n`. 
It also introduces the notation `Λ[R]^n M` for `exteriorPower R n M`.

Note: for a reason that I don't understand, Lean becomes unable to synthesize the `SetLike.GradedMonoid` instance on `fun (i : ℕ) ↦ (Λ[R]^i) M`, so I added it manually in `ExteriorAlgebra/Graded.lean`. I am far from sure that this is the correct solution.



Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
Co-authored-by: Richard Copley <buster@buster.me.uk>
  • Loading branch information
3 people authored and Louddy committed Apr 15, 2024
1 parent c724f35 commit 295941b
Show file tree
Hide file tree
Showing 2 changed files with 37 additions and 21 deletions.
27 changes: 23 additions & 4 deletions Mathlib/LinearAlgebra/ExteriorAlgebra/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,11 @@ We construct the exterior algebra of a module `M` over a commutative semiring `R
The exterior algebra of the `R`-module `M` is denoted as `ExteriorAlgebra R M`.
It is endowed with the structure of an `R`-algebra.
The `n`th exterior power of the `R`-module `M` is denoted by `exteriorPower R n M`;
it is of type `Submodule R (ExteriorAlgebra R M)` and defined as
`LinearMap.range (ExteriorAlgebra.ι R : M →ₗ[R] ExteriorAlgebra R M) ^ n`.
We also introduce the notation `⋀[R]^n M` for `exteriorPower R n M`.
Given a linear morphism `f : M → A` from a module `M` to another `R`-algebra `A`, such that
`cond : ∀ m : M, f m * f m = 0`, there is a (unique) lift of `f` to an `R`-algebra morphism,
which is denoted `ExteriorAlgebra.lift R f cond`.
Expand Down Expand Up @@ -66,6 +71,21 @@ def ι : M →ₗ[R] ExteriorAlgebra R M :=
CliffordAlgebra.ι _
#align exterior_algebra.ι ExteriorAlgebra.ι

section exteriorPower

-- New variables `n` and `M`, to get the correct order of variables in the notation.
variable (n : ℕ) (M : Type u2) [AddCommGroup M] [Module R M]

/-- Definition of the `n`th exterior power of a `R`-module `N`. We introduce the notation
`⋀[R]^n M` for `exteriorPower R n M`. -/
abbrev exteriorPower : Submodule R (ExteriorAlgebra R M) :=
LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M) ^ n

@[inherit_doc exteriorPower]
notation:max "⋀[" R "]^" n:arg => exteriorPower R n

end exteriorPower

variable {R}

/-- As well as being linear, `ι m` squares to zero. -/
Expand Down Expand Up @@ -333,7 +353,7 @@ variable (R)

/-- The image of `ExteriorAlgebra.ιMulti R n` is contained in the `n`th exterior power. -/
lemma ιMulti_range (n : ℕ) :
Set.range (ιMulti R n (M := M)) ⊆ ↑(LinearMap.range (ι R (M := M)) ^ n) := by
Set.range (ιMulti R n (M := M)) ⊆ ↑(⋀[R]^n M) := by
rw [Set.range_subset_iff]
intro v
rw [ιMulti_apply]
Expand All @@ -344,10 +364,9 @@ lemma ιMulti_range (n : ℕ) :
/-- The image of `ExteriorAlgebra.ιMulti R n` spans the `n`th exterior power, as a submodule
of the exterior algebra. -/
lemma ιMulti_span_fixedDegree (n : ℕ) :
Submodule.span R (Set.range (ιMulti R n)) =
LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M) ^ n := by
Submodule.span R (Set.range (ιMulti R n)) = ⋀[R]^n M := by
refine le_antisymm (Submodule.span_le.2 (ιMulti_range R n)) ?_
rw [Submodule.pow_eq_span_pow_set, Submodule.span_le]
rw [exteriorPower, Submodule.pow_eq_span_pow_set, Submodule.span_le]
refine fun u hu ↦ Submodule.subset_span ?_
obtain ⟨f, rfl⟩ := Set.mem_pow.mp hu
refine ⟨fun i => ιInv (f i).1, ?_⟩
Expand Down
31 changes: 14 additions & 17 deletions Mathlib/LinearAlgebra/ExteriorAlgebra/Grading.lean
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@ The main result is `ExteriorAlgebra.gradedAlgebra`, which says that the exterior
ℕ-graded algebra.
-/


namespace ExteriorAlgebra

variable {R M : Type*} [CommRing R] [AddCommGroup M] [Module R M]
Expand All @@ -30,18 +29,24 @@ open scoped DirectSum
primarily an auxiliary construction used to provide `ExteriorAlgebra.gradedAlgebra`. -/
-- porting note: protected
protected def GradedAlgebra.ι :
M →ₗ[R] ⨁ i : ℕ, ↥(LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M) ^ i) :=
DirectSum.lof R ℕ (fun i => ↥(LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M) ^ i)) 1 ∘ₗ
M →ₗ[R] ⨁ i : ℕ, [R]^i M :=
DirectSum.lof R ℕ (fun i => [R]^i M) 1 ∘ₗ
(ι R).codRestrict _ fun m => by simpa only [pow_one] using LinearMap.mem_range_self _ m
#align exterior_algebra.graded_algebra.ι ExteriorAlgebra.GradedAlgebra.ι

theorem GradedAlgebra.ι_apply (m : M) :
GradedAlgebra.ι R M m =
DirectSum.of (fun i : ℕ => ↥(LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M) ^ i)) 1
DirectSum.of (fun i : ℕ => [R]^i M) 1
⟨ι R m, by simpa only [pow_one] using LinearMap.mem_range_self _ m⟩ :=
rfl
#align exterior_algebra.graded_algebra.ι_apply ExteriorAlgebra.GradedAlgebra.ι_apply

-- Defining this instance manually, because Lean doesn't seem to be able to synthesize it.
-- Strangely, this problem only appears when we use the abbreviation or notation for the
-- exterior powers.
instance : SetLike.GradedMonoid fun i : ℕ ↦ ⋀[R]^i M :=
Submodule.nat_power_gradedMonoid (LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M))

-- Porting note: Lean needs to be reminded of this instance otherwise it cannot
-- synthesize 0 in the next theorem
attribute [instance 1100] MulZeroClass.toZero in
Expand All @@ -53,18 +58,12 @@ theorem GradedAlgebra.ι_sq_zero (m : M) : GradedAlgebra.ι R M m * GradedAlgebr
/-- `ExteriorAlgebra.GradedAlgebra.ι` lifted to exterior algebra. This is
primarily an auxiliary construction used to provide `ExteriorAlgebra.gradedAlgebra`. -/
def GradedAlgebra.liftι :
ExteriorAlgebra R M →ₐ[R] ⨁ i : ℕ,
(LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M) ^ i : Submodule R (ExteriorAlgebra R M)) :=
ExteriorAlgebra R M →ₐ[R] ⨁ i : ℕ, ⋀[R]^i M :=
lift R ⟨by apply GradedAlgebra.ι R M, GradedAlgebra.ι_sq_zero R M⟩
#align exterior_algebra.graded_algebra.lift_ι ExteriorAlgebra.GradedAlgebra.liftι

theorem GradedAlgebra.liftι_eq (i : ℕ)
(x : (LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M) ^ i :
Submodule R (ExteriorAlgebra R M))) :
GradedAlgebra.liftι R M x =
DirectSum.of (fun i =>
↥(LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M) ^ i :
Submodule R (ExteriorAlgebra R M))) i x := by
theorem GradedAlgebra.liftι_eq (i : ℕ) (x : ⋀[R]^i M) :
GradedAlgebra.liftι R M x = DirectSum.of (fun i => ⋀[R]^i M) i x := by
cases' x with x hx
dsimp only [Subtype.coe_mk, DirectSum.lof_eq_of]
-- Porting note: original statement was
Expand All @@ -83,8 +82,7 @@ theorem GradedAlgebra.liftι_eq (i : ℕ)
#align exterior_algebra.graded_algebra.lift_ι_eq ExteriorAlgebra.GradedAlgebra.liftι_eq

/-- The exterior algebra is graded by the powers of the submodule `(ExteriorAlgebra.ι R).range`. -/
instance gradedAlgebra :
GradedAlgebra (LinearMap.range (ι R : M →ₗ[R] ExteriorAlgebra R M) ^ · : ℕ → Submodule R _) :=
instance gradedAlgebra : GradedAlgebra (fun i : ℕ ↦ ⋀[R]^i M) :=
GradedAlgebra.ofAlgHom _
(-- while not necessary, the `by apply` makes this elaborate faster
by apply GradedAlgebra.liftι R M)
Expand All @@ -103,8 +101,7 @@ lemma ιMulti_span :
Submodule.span R (Set.range fun x : Σ n, (Fin n → M) => ιMulti R x.1 x.2) = ⊤ := by
rw [Submodule.eq_top_iff']
intro x
induction x
using DirectSum.Decomposition.inductionOn fun i => LinearMap.range (ι R (M := M)) ^ i with
induction x using DirectSum.Decomposition.inductionOn fun i => ⋀[R]^i M with
| h_zero => exact Submodule.zero_mem _
| h_add _ _ hm hm' => exact Submodule.add_mem _ hm hm'
| h_homogeneous hm =>
Expand Down

0 comments on commit 295941b

Please sign in to comment.