Skip to content

Commit 2ae8cf3

Browse files
chore: rename encard_le_card to encard_le_encard (#21426)
1 parent 395bedc commit 2ae8cf3

File tree

2 files changed

+8
-6
lines changed

2 files changed

+8
-6
lines changed

Mathlib/Data/Matroid/IndepAxioms.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -389,7 +389,7 @@ protected def ofFinite {E : Set α} (hE : E.Finite) (Indep : Set α → Prop)
389389
(hE.subset (subset_ground hI)).cast_ncard_eq] )
390390
(indep_bdd := ⟨E.ncard, fun I hI ↦ by
391391
rw [hE.cast_ncard_eq]
392-
exact encard_le_card <| subset_ground hI ⟩)
392+
exact encard_le_encard <| subset_ground hI ⟩)
393393
(subset_ground := subset_ground)
394394

395395
@[simp] theorem ofFinite_E {E : Set α} hE Indep indep_empty indep_subset indep_aug subset_ground :

Mathlib/Data/Set/Card.lean

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -146,11 +146,13 @@ theorem encard_le_coe_iff {k : ℕ} : s.encard ≤ k ↔ s.Finite ∧ ∃ (n₀
146146

147147
section Lattice
148148

149-
theorem encard_le_card (h : s ⊆ t) : s.encard ≤ t.encard := by
149+
theorem encard_le_encard (h : s ⊆ t) : s.encard ≤ t.encard := by
150150
rw [← union_diff_cancel h, encard_union_eq disjoint_sdiff_right]; exact le_self_add
151151

152+
@[deprecated (since := "2025-01-05")] alias encard_le_card := encard_le_encard
153+
152154
theorem encard_mono {α : Type*} : Monotone (encard : Set α → ℕ∞) :=
153-
fun _ _ ↦ encard_le_card
155+
fun _ _ ↦ encard_le_encard
154156

155157
theorem encard_diff_add_encard_of_subset (h : s ⊆ t) : (t \ s).encard + s.encard = t.encard := by
156158
rw [← encard_union_eq disjoint_sdiff_left, diff_union_self, union_eq_self_of_subset_right h]
@@ -235,7 +237,7 @@ theorem encard_insert_le (s : Set α) (x : α) : (insert x s).encard ≤ s.encar
235237
rw [← union_singleton, ← encard_singleton x]; apply encard_union_le
236238

237239
theorem encard_singleton_inter (s : Set α) (x : α) : ({x} ∩ s).encard ≤ 1 := by
238-
rw [← encard_singleton x]; exact encard_le_card inter_subset_left
240+
rw [← encard_singleton x]; exact encard_le_encard inter_subset_left
239241

240242
theorem encard_diff_singleton_add_one (h : a ∈ s) :
241243
(s \ {a}).encard + 1 = s.encard := by
@@ -393,7 +395,7 @@ theorem encard_image_le (f : α → β) (s : Set α) : (f '' s).encard ≤ s.enc
393395
obtain (h | h) := isEmpty_or_nonempty α
394396
· rw [s.eq_empty_of_isEmpty]; simp
395397
rw [← (f.invFunOn_injOn_image s).encard_image]
396-
apply encard_le_card
398+
apply encard_le_encard
397399
exact f.invFunOn_image_image_subset s
398400

399401
theorem Finite.injOn_of_encard_image_eq (hs : s.Finite) (h : (f '' s).encard = s.encard) :
@@ -410,7 +412,7 @@ theorem encard_preimage_of_injective_subset_range (hf : f.Injective) (ht : t ⊆
410412

411413
theorem encard_le_encard_of_injOn (hf : MapsTo f s t) (f_inj : InjOn f s) :
412414
s.encard ≤ t.encard := by
413-
rw [← f_inj.encard_image]; apply encard_le_card; rintro _ ⟨x, hx, rfl⟩; exact hf hx
415+
rw [← f_inj.encard_image]; apply encard_le_encard; rintro _ ⟨x, hx, rfl⟩; exact hf hx
414416

415417
theorem Finite.exists_injOn_of_encard_le [Nonempty β] {s : Set α} {t : Set β} (hs : s.Finite)
416418
(hle : s.encard ≤ t.encard) : ∃ (f : α → β), s ⊆ f ⁻¹' t ∧ InjOn f s := by

0 commit comments

Comments
 (0)