Skip to content

Commit

Permalink
1st commit
Browse files Browse the repository at this point in the history
  • Loading branch information
xroblot committed Aug 7, 2023
1 parent 6c4987d commit 2cfb8e9
Show file tree
Hide file tree
Showing 3 changed files with 1 addition and 74 deletions.
1 change: 0 additions & 1 deletion Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2494,7 +2494,6 @@ import Mathlib.NumberTheory.Multiplicity
import Mathlib.NumberTheory.NumberField.Basic
import Mathlib.NumberTheory.NumberField.CanonicalEmbedding
import Mathlib.NumberTheory.NumberField.ClassNumber
import Mathlib.NumberTheory.NumberField.Discriminant
import Mathlib.NumberTheory.NumberField.Embeddings
import Mathlib.NumberTheory.NumberField.Norm
import Mathlib.NumberTheory.NumberField.Units
Expand Down
57 changes: 0 additions & 57 deletions Mathlib/NumberTheory/NumberField/Discriminant.lean

This file was deleted.

17 changes: 1 addition & 16 deletions Mathlib/RingTheory/Discriminant.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@ Copyright (c) 2021 Riccardo Brasca. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Riccardo Brasca
-/
import Mathlib.NumberTheory.NumberField.Basic
import Mathlib.RingTheory.Trace
import Mathlib.RingTheory.Norm
import Mathlib.NumberTheory.NumberField.Basic

#align_import ring_theory.discriminant from "leanprover-community/mathlib"@"3e068ece210655b7b9a9477c3aff38a492400aa1"

Expand Down Expand Up @@ -376,21 +376,6 @@ end Integral

end Field

section Int

end Int

/-- Two (finite) ℤ-basis have the same discriminant. -/
theorem discr_eq_discr [Fintype ι] (b : Basis ι ℤ A) (b' : Basis ι ℤ A) :
Algebra.discr ℤ b = Algebra.discr ℤ b' := by
convert Algebra.discr_of_matrix_vecMul b' (b'.toMatrix b)
· rw [Basis.toMatrix_map_vecMul]
· suffices IsUnit (b'.toMatrix b).det by
rw [Int.isUnit_iff, ← sq_eq_one_iff] at this
rw [this, one_mul]
rw [← LinearMap.toMatrix_id_eq_basis_toMatrix b b']
exact LinearEquiv.isUnit_det (LinearEquiv.refl ℤ A) b b'

end Discr

end Algebra

0 comments on commit 2cfb8e9

Please sign in to comment.