|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Kenny Lau. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Kenny Lau, Ken Lee, Chris Hughes |
| 5 | +-/ |
| 6 | +import Mathlib.Tactic.Ring |
| 7 | +import Mathlib.GroupTheory.GroupAction.Units |
| 8 | +import Mathlib.Algebra.Ring.Divisibility |
| 9 | +import Mathlib.Algebra.Hom.Ring |
| 10 | +import Mathlib.Algebra.GroupPower.Ring |
| 11 | + |
| 12 | +/-! |
| 13 | +# Coprime elements of a ring |
| 14 | +
|
| 15 | +## Main definitions |
| 16 | +
|
| 17 | +* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such |
| 18 | +that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime, |
| 19 | +e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. |
| 20 | +
|
| 21 | +See also `RingTheory.Coprime.Lemmas` for further development of coprime elements. |
| 22 | +-/ |
| 23 | + |
| 24 | + |
| 25 | +open Classical |
| 26 | + |
| 27 | +universe u v |
| 28 | + |
| 29 | +section CommSemiring |
| 30 | + |
| 31 | +variable {R : Type u} [CommSemiring R] (x y z : R) |
| 32 | + |
| 33 | +/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such |
| 34 | +that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime, |
| 35 | +e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/ |
| 36 | +@[simp] |
| 37 | +def IsCoprime : Prop := |
| 38 | + ∃ a b, a * x + b * y = 1 |
| 39 | +#align is_coprime IsCoprime |
| 40 | + |
| 41 | +variable {x y z} |
| 42 | + |
| 43 | +theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x := |
| 44 | + let ⟨a, b, H⟩ := H |
| 45 | + ⟨b, a, by rw [add_comm, H]⟩ |
| 46 | +#align is_coprime.symm IsCoprime.symm |
| 47 | + |
| 48 | +theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x := |
| 49 | + ⟨IsCoprime.symm, IsCoprime.symm⟩ |
| 50 | +#align is_coprime_comm isCoprime_comm |
| 51 | + |
| 52 | +theorem isCoprime_self : IsCoprime x x ↔ IsUnit x := |
| 53 | + ⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h => |
| 54 | + let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h |
| 55 | + ⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩ |
| 56 | +#align is_coprime_self isCoprime_self |
| 57 | + |
| 58 | +theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x := |
| 59 | + ⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H => |
| 60 | + let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H |
| 61 | + ⟨1, b, by rwa [one_mul, zero_add]⟩⟩ |
| 62 | +#align is_coprime_zero_left isCoprime_zero_left |
| 63 | + |
| 64 | +theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x := |
| 65 | + isCoprime_comm.trans isCoprime_zero_left |
| 66 | +#align is_coprime_zero_right isCoprime_zero_right |
| 67 | + |
| 68 | +theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 := |
| 69 | + mt isCoprime_zero_right.mp not_isUnit_zero |
| 70 | +#align not_coprime_zero_zero not_isCoprime_zero_zero |
| 71 | + |
| 72 | +/-- If a 2-vector `p` satisfies `is_coprime (p 0) (p 1)`, then `p ≠ 0`. -/ |
| 73 | +theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by |
| 74 | + rintro rfl |
| 75 | + exact not_isCoprime_zero_zero h |
| 76 | +#align is_coprime.ne_zero IsCoprime.ne_zero |
| 77 | + |
| 78 | +theorem isCoprime_one_left : IsCoprime 1 x := |
| 79 | + ⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩ |
| 80 | +#align is_coprime_one_left isCoprime_one_left |
| 81 | + |
| 82 | +theorem isCoprime_one_right : IsCoprime x 1 := |
| 83 | + ⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩ |
| 84 | +#align is_coprime_one_right isCoprime_one_right |
| 85 | + |
| 86 | +theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by |
| 87 | + let ⟨a, b, H⟩ := H1 |
| 88 | + rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm] |
| 89 | + exact dvd_add (dvd_mul_left _ _) (H2.mul_left _) |
| 90 | +#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right |
| 91 | + |
| 92 | +theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by |
| 93 | + let ⟨a, b, H⟩ := H1 |
| 94 | + rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b] |
| 95 | + exact dvd_add (dvd_mul_left _ _) (H2.mul_left _) |
| 96 | +#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left |
| 97 | + |
| 98 | +theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z := |
| 99 | + let ⟨a, b, h1⟩ := H1 |
| 100 | + let ⟨c, d, h2⟩ := H2 |
| 101 | + ⟨a * c, a * x * d + b * c * y + b * d * z, |
| 102 | + calc |
| 103 | + a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z = |
| 104 | + (a * x + b * z) * (c * y + d * z) := |
| 105 | + by ring |
| 106 | + _ = 1 := by rw [h1, h2, mul_one] |
| 107 | + ⟩ |
| 108 | +#align is_coprime.mul_left IsCoprime.mul_left |
| 109 | + |
| 110 | +theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by |
| 111 | + rw [isCoprime_comm] at H1 H2⊢ |
| 112 | + exact H1.mul_left H2 |
| 113 | +#align is_coprime.mul_right IsCoprime.mul_right |
| 114 | + |
| 115 | +theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by |
| 116 | + obtain ⟨a, b, h⟩ := H |
| 117 | + rw [← mul_one z, ← h, mul_add] |
| 118 | + apply dvd_add |
| 119 | + · rw [mul_comm z, mul_assoc] |
| 120 | + exact (mul_dvd_mul_left _ H2).mul_left _ |
| 121 | + · rw [mul_comm b, ← mul_assoc] |
| 122 | + exact (mul_dvd_mul_right H1 _).mul_right _ |
| 123 | +#align is_coprime.mul_dvd IsCoprime.mul_dvd |
| 124 | + |
| 125 | +theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z := |
| 126 | + let ⟨a, b, h⟩ := H |
| 127 | + ⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩ |
| 128 | +#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left |
| 129 | + |
| 130 | +theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by |
| 131 | + rw [mul_comm] at H |
| 132 | + exact H.of_mul_left_left |
| 133 | +#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right |
| 134 | + |
| 135 | +theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by |
| 136 | + rw [isCoprime_comm] at H⊢ |
| 137 | + exact H.of_mul_left_left |
| 138 | +#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left |
| 139 | + |
| 140 | +theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by |
| 141 | + rw [mul_comm] at H |
| 142 | + exact H.of_mul_right_left |
| 143 | +#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right |
| 144 | + |
| 145 | +theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z := |
| 146 | + ⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩ |
| 147 | +#align is_coprime.mul_left_iff IsCoprime.mul_left_iff |
| 148 | + |
| 149 | +theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by |
| 150 | + rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z] |
| 151 | +#align is_coprime.mul_right_iff IsCoprime.mul_right_iff |
| 152 | + |
| 153 | +theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by |
| 154 | + obtain ⟨d, rfl⟩ := hdvd |
| 155 | + exact IsCoprime.of_mul_left_left h |
| 156 | +#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left |
| 157 | + |
| 158 | +theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x := |
| 159 | + (h.symm.of_isCoprime_of_dvd_left hdvd).symm |
| 160 | +#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right |
| 161 | + |
| 162 | +theorem IsCoprime.is_unit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x := |
| 163 | + let ⟨k, hk⟩ := d |
| 164 | + isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H |
| 165 | +#align is_coprime.is_unit_of_dvd IsCoprime.is_unit_of_dvd |
| 166 | + |
| 167 | +theorem IsCoprime.is_unit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) : |
| 168 | + IsUnit x := |
| 169 | + (h.of_isCoprime_of_dvd_left ha).is_unit_of_dvd hb |
| 170 | +#align is_coprime.is_unit_of_dvd' IsCoprime.is_unit_of_dvd' |
| 171 | + |
| 172 | +theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) : |
| 173 | + IsCoprime (f x) (f y) := |
| 174 | + let ⟨a, b, h⟩ := H |
| 175 | + ⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩ |
| 176 | +#align is_coprime.map IsCoprime.map |
| 177 | + |
| 178 | +theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y := |
| 179 | + let ⟨a, b, H⟩ := h |
| 180 | + ⟨a, a * z + b, by |
| 181 | + simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm, |
| 182 | + mul_left_comm] using H⟩ |
| 183 | +#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left |
| 184 | + |
| 185 | +theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by |
| 186 | + rw [mul_comm] at h |
| 187 | + exact h.of_add_mul_left_left |
| 188 | +#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left |
| 189 | + |
| 190 | +theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by |
| 191 | + rw [isCoprime_comm] at h⊢ |
| 192 | + exact h.of_add_mul_left_left |
| 193 | +#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right |
| 194 | + |
| 195 | +theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by |
| 196 | + rw [mul_comm] at h |
| 197 | + exact h.of_add_mul_left_right |
| 198 | +#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right |
| 199 | + |
| 200 | +theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by |
| 201 | + rw [add_comm] at h |
| 202 | + exact h.of_add_mul_left_left |
| 203 | +#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left |
| 204 | + |
| 205 | +theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by |
| 206 | + rw [add_comm] at h |
| 207 | + exact h.of_add_mul_right_left |
| 208 | +#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left |
| 209 | + |
| 210 | +theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by |
| 211 | + rw [add_comm] at h |
| 212 | + exact h.of_add_mul_left_right |
| 213 | +#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right |
| 214 | + |
| 215 | +theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by |
| 216 | + rw [add_comm] at h |
| 217 | + exact h.of_add_mul_right_right |
| 218 | +#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right |
| 219 | + |
| 220 | +end CommSemiring |
| 221 | + |
| 222 | +section ScalarTower |
| 223 | + |
| 224 | +variable {R G : Type _} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R] |
| 225 | + [IsScalarTower G R R] (x : G) (y z : R) |
| 226 | + |
| 227 | +theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z := |
| 228 | + ⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ => |
| 229 | + ⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩ |
| 230 | +#align is_coprime_group_smul_left isCoprime_group_smul_left |
| 231 | + |
| 232 | +theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z := |
| 233 | + isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm |
| 234 | +#align is_coprime_group_smul_right isCoprime_group_smul_right |
| 235 | + |
| 236 | +theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z := |
| 237 | + (isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z) |
| 238 | +#align is_coprime_group_smul isCoprime_group_smul |
| 239 | + |
| 240 | +end ScalarTower |
| 241 | + |
| 242 | +section CommSemiringUnit |
| 243 | + |
| 244 | +variable {R : Type _} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R) |
| 245 | + |
| 246 | +theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z := |
| 247 | + let ⟨u, hu⟩ := hu |
| 248 | + hu ▸ isCoprime_group_smul_left u y z |
| 249 | +#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left |
| 250 | + |
| 251 | +theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z := |
| 252 | + let ⟨u, hu⟩ := hu |
| 253 | + hu ▸ isCoprime_group_smul_right u y z |
| 254 | +#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right |
| 255 | + |
| 256 | +theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z := |
| 257 | + (isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z) |
| 258 | +#align is_coprime_mul_unit_left isCoprime_mul_unit_left |
| 259 | + |
| 260 | +theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z := |
| 261 | + mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z |
| 262 | +#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left |
| 263 | + |
| 264 | +theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z := |
| 265 | + mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z |
| 266 | +#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right |
| 267 | + |
| 268 | +theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z := |
| 269 | + (isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z) |
| 270 | +#align is_coprime_mul_unit_right isCoprime_mul_unit_right |
| 271 | + |
| 272 | +end CommSemiringUnit |
| 273 | + |
| 274 | +namespace IsCoprime |
| 275 | + |
| 276 | +section CommRing |
| 277 | + |
| 278 | +variable {R : Type u} [CommRing R] |
| 279 | + |
| 280 | +theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y := |
| 281 | + @of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h |
| 282 | +#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left |
| 283 | + |
| 284 | +theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by |
| 285 | + rw [mul_comm] |
| 286 | + exact h.add_mul_left_left z |
| 287 | +#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left |
| 288 | + |
| 289 | +theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by |
| 290 | + rw [isCoprime_comm] |
| 291 | + exact h.symm.add_mul_left_left z |
| 292 | +#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right |
| 293 | + |
| 294 | +theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by |
| 295 | + rw [isCoprime_comm] |
| 296 | + exact h.symm.add_mul_right_left z |
| 297 | +#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right |
| 298 | + |
| 299 | +theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by |
| 300 | + rw [add_comm] |
| 301 | + exact h.add_mul_left_left z |
| 302 | +#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left |
| 303 | + |
| 304 | +theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by |
| 305 | + rw [add_comm] |
| 306 | + exact h.add_mul_right_left z |
| 307 | +#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left |
| 308 | + |
| 309 | +theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by |
| 310 | + rw [add_comm] |
| 311 | + exact h.add_mul_left_right z |
| 312 | +#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right |
| 313 | + |
| 314 | +theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by |
| 315 | + rw [add_comm] |
| 316 | + exact h.add_mul_right_right z |
| 317 | +#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right |
| 318 | + |
| 319 | +theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y := |
| 320 | + ⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩ |
| 321 | +#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff |
| 322 | + |
| 323 | +theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y := |
| 324 | + ⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩ |
| 325 | +#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff |
| 326 | + |
| 327 | +theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y := |
| 328 | + ⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩ |
| 329 | +#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff |
| 330 | + |
| 331 | +theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y := |
| 332 | + ⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩ |
| 333 | +#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff |
| 334 | + |
| 335 | +theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y := |
| 336 | + ⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩ |
| 337 | +#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff |
| 338 | + |
| 339 | +theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y := |
| 340 | + ⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩ |
| 341 | +#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff |
| 342 | + |
| 343 | +theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y := |
| 344 | + ⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩ |
| 345 | +#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff |
| 346 | + |
| 347 | +theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y := |
| 348 | + ⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩ |
| 349 | +#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff |
| 350 | + |
| 351 | +theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by |
| 352 | + obtain ⟨a, b, h⟩ := h |
| 353 | + use -a, b |
| 354 | + rwa [neg_mul_neg] |
| 355 | +#align is_coprime.neg_left IsCoprime.neg_left |
| 356 | + |
| 357 | +theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y := |
| 358 | + ⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩ |
| 359 | +#align is_coprime.neg_left_iff IsCoprime.neg_left_iff |
| 360 | + |
| 361 | +theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) := |
| 362 | + h.symm.neg_left.symm |
| 363 | +#align is_coprime.neg_right IsCoprime.neg_right |
| 364 | + |
| 365 | +theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y := |
| 366 | + ⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩ |
| 367 | +#align is_coprime.neg_right_iff IsCoprime.neg_right_iff |
| 368 | + |
| 369 | +theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) := |
| 370 | + h.neg_left.neg_right |
| 371 | +#align is_coprime.neg_neg IsCoprime.neg_neg |
| 372 | + |
| 373 | +theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y := |
| 374 | + (neg_left_iff _ _).trans (neg_right_iff _ _) |
| 375 | +#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff |
| 376 | + |
| 377 | +end CommRing |
| 378 | + |
| 379 | +theorem sq_add_sq_ne_zero {R : Type _} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) : |
| 380 | + a ^ 2 + b ^ 2 ≠ 0 := by |
| 381 | + intro h' |
| 382 | + obtain ⟨ha, hb⟩ := (add_eq_zero_iff' |
| 383 | + --Porting TODO: replace with sq_nonneg when that file is ported |
| 384 | + (by rw [pow_two]; exact mul_self_nonneg _) |
| 385 | + (by rw [pow_two]; exact mul_self_nonneg _)).mp h' |
| 386 | + obtain rfl := pow_eq_zero ha |
| 387 | + obtain rfl := pow_eq_zero hb |
| 388 | + exact not_isCoprime_zero_zero h |
| 389 | +#align is_coprime.sq_add_sq_ne_zero IsCoprime.sq_add_sq_ne_zero |
| 390 | + |
| 391 | +end IsCoprime |
0 commit comments