Skip to content

Commit 2da494d

Browse files
committed
chore: swap primes on forall_apply_eq_imp_iff (#7705)
Two pairs of the form `foo` and `foo'`, where `foo'` is the simp lemma (and hence used in many `simp only`s) and `foo` is not used at all. Swap the primes, so that when it is time (now!) to upstream the lemma we actually use, it doesn't need to have a prime... Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
1 parent 4de9b98 commit 2da494d

File tree

9 files changed

+23
-23
lines changed

9 files changed

+23
-23
lines changed

Mathlib/Analysis/NormedSpace/lpSpace.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -670,7 +670,7 @@ theorem norm_const_smul_le (hp : p ≠ 0) (c : 𝕜) (f : lp E p) : ‖c • f
670670
refine' hcf.right _
671671
have := hfc.left
672672
simp_rw [mem_upperBounds, Set.mem_range,
673-
forall_exists_index, forall_apply_eq_imp_iff'] at this ⊢
673+
forall_exists_index, forall_apply_eq_imp_iff] at this ⊢
674674
intro a
675675
exact (norm_smul_le _ _).trans (this a)
676676
· letI inst : NNNorm (lp E p) := ⟨fun f => ⟨‖f‖, norm_nonneg' _⟩⟩

Mathlib/Data/Set/Card.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1035,7 +1035,7 @@ theorem ncard_le_one_iff_eq (hs : s.Finite := by toFinite_tac) :
10351035
rintro (rfl | ⟨a, rfl⟩)
10361036
· exact (not_mem_empty _ hx).elim
10371037
simp_rw [mem_singleton_iff] at hx ⊢; subst hx
1038-
simp only [forall_eq_apply_imp_iff', imp_self, implies_true]
1038+
simp only [forall_eq_apply_imp_iff, imp_self, implies_true]
10391039
#align set.ncard_le_one_iff_eq Set.ncard_le_one_iff_eq
10401040

10411041
theorem ncard_le_one_iff_subset_singleton [Nonempty α]

Mathlib/LinearAlgebra/Matrix/Determinant.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -686,7 +686,7 @@ theorem det_fromBlocks_zero₂₁ (A : Matrix m m R) (B : Matrix m n R) (D : Mat
686686
have h1 : ¬∀ x, ∃ y, Sum.inl y = σ (Sum.inl x) := by
687687
rw [Set.mem_toFinset] at hσn
688688
-- Porting note: golfed
689-
simpa only [Set.MapsTo, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff'] using
689+
simpa only [Set.MapsTo, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff] using
690690
mt mem_sumCongrHom_range_of_perm_mapsTo_inl hσn
691691
obtain ⟨a, ha⟩ := not_forall.mp h1
692692
cases' hx : σ (Sum.inl a) with a2 b

Mathlib/LinearAlgebra/Matrix/Polynomial.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ theorem natDegree_det_X_add_C_le (A B : Matrix n n α) :
4141
rw [det_apply]
4242
refine' (natDegree_sum_le _ _).trans _
4343
refine' Multiset.max_nat_le_of_forall_le _ _ _
44-
simp only [forall_apply_eq_imp_iff', true_and_iff, Function.comp_apply, Multiset.map_map,
44+
simp only [forall_apply_eq_imp_iff, true_and_iff, Function.comp_apply, Multiset.map_map,
4545
Multiset.mem_map, exists_imp, Finset.mem_univ_val]
4646
intro g
4747
calc

Mathlib/Logic/Basic.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -820,21 +820,21 @@ theorem exists_apply_eq (a : α) (b : β) : ∃ f : α → β, f a = b := ⟨fun
820820
@[simp] theorem exists_or_eq_right' (y : α) (p : α → Prop) : ∃ x : α, p x ∨ y = x := ⟨y, .inr rfl⟩
821821
#align exists_or_eq_right' exists_or_eq_right'
822822

823-
theorem forall_apply_eq_imp_iff {f : α → β} {p : β → Prop} :
823+
theorem forall_apply_eq_imp_iff' {f : α → β} {p : β → Prop} :
824824
(∀ a b, f a = b → p b) ↔ ∀ a, p (f a) := by simp
825-
#align forall_apply_eq_imp_iff forall_apply_eq_imp_iff
825+
#align forall_apply_eq_imp_iff forall_apply_eq_imp_iff'
826826

827-
@[simp] theorem forall_apply_eq_imp_iff' {f : α → β} {p : β → Prop} :
827+
@[simp] theorem forall_apply_eq_imp_iff {f : α → β} {p : β → Prop} :
828828
(∀ b a, f a = b → p b) ↔ ∀ a, p (f a) := by simp [forall_swap]
829-
#align forall_apply_eq_imp_iff' forall_apply_eq_imp_iff'
829+
#align forall_apply_eq_imp_iff' forall_apply_eq_imp_iff
830830

831-
theorem forall_eq_apply_imp_iff {f : α → β} {p : β → Prop} :
831+
theorem forall_eq_apply_imp_iff' {f : α → β} {p : β → Prop} :
832832
(∀ a b, b = f a → p b) ↔ ∀ a, p (f a) := by simp
833-
#align forall_eq_apply_imp_iff forall_eq_apply_imp_iff
833+
#align forall_eq_apply_imp_iff forall_eq_apply_imp_iff'
834834

835-
@[simp] theorem forall_eq_apply_imp_iff' {f : α → β} {p : β → Prop} :
835+
@[simp] theorem forall_eq_apply_imp_iff {f : α → β} {p : β → Prop} :
836836
(∀ b a, b = f a → p b) ↔ ∀ a, p (f a) := by simp [forall_swap]
837-
#align forall_eq_apply_imp_iff' forall_eq_apply_imp_iff'
837+
#align forall_eq_apply_imp_iff' forall_eq_apply_imp_iff
838838

839839
@[simp] theorem forall_apply_eq_imp_iff₂ {f : α → β} {p : α → Prop} {q : β → Prop} :
840840
(∀ b a, p a → f a = b → q b) ↔ ∀ a, p a → q (f a) :=

Mathlib/MeasureTheory/Covering/BesicovitchVectorSpace.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -266,11 +266,11 @@ theorem exists_goodδ :
266266
let s := Finset.image f Finset.univ
267267
have s_card : s.card = N := by rw [Finset.card_image_of_injective _ finj]; exact Finset.card_fin N
268268
have hs : ∀ c ∈ s, ‖c‖ ≤ 2 := by
269-
simp only [hf, forall_apply_eq_imp_iff', forall_const, forall_exists_index, Finset.mem_univ,
269+
simp only [hf, forall_apply_eq_imp_iff, forall_const, forall_exists_index, Finset.mem_univ,
270270
Finset.mem_image, true_and]
271271
have h's : ∀ c ∈ s, ∀ d ∈ s, c ≠ d → 1 ≤ ‖c - d‖ := by
272-
simp only [forall_apply_eq_imp_iff', forall_exists_index, Finset.mem_univ, Finset.mem_image,
273-
Ne.def, exists_true_left, forall_apply_eq_imp_iff', forall_true_left, true_and]
272+
simp only [forall_apply_eq_imp_iff, forall_exists_index, Finset.mem_univ, Finset.mem_image,
273+
Ne.def, exists_true_left, forall_apply_eq_imp_iff, forall_true_left, true_and]
274274
intro i j hij
275275
have : i ≠ j := fun h => by rw [h] at hij; exact hij rfl
276276
exact h'f i j this
@@ -319,11 +319,11 @@ theorem le_multiplicity_of_δ_of_fin {n : ℕ} (f : Fin n → E) (h : ∀ i, ‖
319319
let s := Finset.image f Finset.univ
320320
have s_card : s.card = n := by rw [Finset.card_image_of_injective _ finj]; exact Finset.card_fin n
321321
have hs : ∀ c ∈ s, ‖c‖ ≤ 2 := by
322-
simp only [h, forall_apply_eq_imp_iff', forall_const, forall_exists_index, Finset.mem_univ,
322+
simp only [h, forall_apply_eq_imp_iff, forall_const, forall_exists_index, Finset.mem_univ,
323323
Finset.mem_image, imp_true_iff, true_and]
324324
have h's : ∀ c ∈ s, ∀ d ∈ s, c ≠ d → 1 - goodδ E ≤ ‖c - d‖ := by
325-
simp only [forall_apply_eq_imp_iff', forall_exists_index, Finset.mem_univ, Finset.mem_image,
326-
Ne.def, exists_true_left, forall_apply_eq_imp_iff', forall_true_left, true_and]
325+
simp only [forall_apply_eq_imp_iff, forall_exists_index, Finset.mem_univ, Finset.mem_image,
326+
Ne.def, exists_true_left, forall_apply_eq_imp_iff, forall_true_left, true_and]
327327
intro i j hij
328328
have : i ≠ j := fun h => by rw [h] at hij; exact hij rfl
329329
exact h' i j this

Mathlib/Order/OmegaCompletePartialOrder.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -239,17 +239,17 @@ theorem ωSup_le_iff (c : Chain α) (x : α) : ωSup c ≤ x ↔ ∀ i, c i ≤
239239

240240
lemma isLUB_range_ωSup (c : Chain α) : IsLUB (Set.range c) (ωSup c) := by
241241
constructor
242-
· simp only [upperBounds, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff',
242+
· simp only [upperBounds, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff,
243243
Set.mem_setOf_eq]
244244
exact fun a ↦ le_ωSup c a
245245
· simp only [lowerBounds, upperBounds, Set.mem_range, forall_exists_index,
246-
forall_apply_eq_imp_iff', Set.mem_setOf_eq]
246+
forall_apply_eq_imp_iff, Set.mem_setOf_eq]
247247
exact fun ⦃a⦄ a_1 ↦ ωSup_le c a a_1
248248

249249
lemma ωSup_eq_of_isLUB {c : Chain α} {a : α} (h : IsLUB (Set.range c) a) : a = ωSup c := by
250250
rw [le_antisymm_iff]
251251
simp only [IsLUB, IsLeast, upperBounds, lowerBounds, Set.mem_range, forall_exists_index,
252-
forall_apply_eq_imp_iff', Set.mem_setOf_eq] at h
252+
forall_apply_eq_imp_iff, Set.mem_setOf_eq] at h
253253
constructor
254254
· apply h.2
255255
exact fun a ↦ le_ωSup c a

Mathlib/Probability/Kernel/Disintegration.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -517,7 +517,7 @@ lemma eq_condKernel_of_measure_eq_compProd_real (ρ : Measure (α × ℝ)) [IsFi
517517
apply MeasurableSpace.ae_induction_on_inter Real.borel_eq_generateFrom_Iic_rat
518518
Real.isPiSystem_Iic_rat
519519
· simp only [OuterMeasure.empty', Filter.eventually_true]
520-
· simp only [iUnion_singleton_eq_range, mem_range, forall_exists_index, forall_apply_eq_imp_iff']
520+
· simp only [iUnion_singleton_eq_range, mem_range, forall_exists_index, forall_apply_eq_imp_iff]
521521
exact ae_all_iff.2 <| fun q => eq_condKernel_of_measure_eq_compProd' ρ κ hκ measurableSet_Iic
522522
· filter_upwards [huniv] with x hxuniv t ht heq
523523
rw [measure_compl ht <| measure_ne_top _ _, heq, hxuniv, measure_compl ht <| measure_ne_top _ _]

Mathlib/Topology/Algebra/Order/LiminfLimsup.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -449,7 +449,7 @@ theorem limsup_eq_tendsto_sum_indicator_nat_atTop (s : ℕ → Set α) :
449449
refine' tendsto_atTop_atTop_of_monotone' (fun n m hnm ↦ Finset.sum_mono_set_of_nonneg
450450
(fun i ↦ Set.indicator_nonneg (fun _ _ ↦ zero_le_one) _) (Finset.range_mono hnm)) _
451451
rintro ⟨i, h⟩
452-
simp only [mem_upperBounds, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff'] at h
452+
simp only [mem_upperBounds, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff] at h
453453
induction' i with k hk
454454
· obtain ⟨j, hj₁, hj₂⟩ := hω 1
455455
refine' not_lt.2 (h <| j + 1)

0 commit comments

Comments
 (0)