@@ -341,8 +341,8 @@ theorem exists_isSubordinate [T2Space M] [SigmaCompactSpace M] (hs : IsClosed s)
341
341
(hU : ∀ x ∈ s, U x ∈ 𝓝 x) :
342
342
∃ (ι : Type uM) (f : SmoothBumpCovering ι I M s), f.IsSubordinate U := by
343
343
-- First we deduce some missing instances
344
- haveI : LocallyCompactSpace H := I.locally_compact
345
- haveI : LocallyCompactSpace M := ChartedSpace.locallyCompact H M
344
+ haveI : LocallyCompactSpace H := I.locallyCompactSpace
345
+ haveI : LocallyCompactSpace M := ChartedSpace.locallyCompactSpace H M
346
346
haveI : NormalSpace M := normal_of_paracompact_t2
347
347
-- Next we choose a covering by supports of smooth bump functions
348
348
have hB := fun x hx => SmoothBumpFunction.nhds_basis_support I (hU x hx)
@@ -521,8 +521,8 @@ variable [T2Space M] [SigmaCompactSpace M]
521
521
`s`, then there exists a `SmoothPartitionOfUnity ι M s` that is subordinate to `U`. -/
522
522
theorem exists_isSubordinate {s : Set M} (hs : IsClosed s) (U : ι → Set M) (ho : ∀ i, IsOpen (U i))
523
523
(hU : s ⊆ ⋃ i, U i) : ∃ f : SmoothPartitionOfUnity ι I M s, f.IsSubordinate U := by
524
- haveI : LocallyCompactSpace H := I.locally_compact
525
- haveI : LocallyCompactSpace M := ChartedSpace.locallyCompact H M
524
+ haveI : LocallyCompactSpace H := I.locallyCompactSpace
525
+ haveI : LocallyCompactSpace M := ChartedSpace.locallyCompactSpace H M
526
526
haveI : NormalSpace M := normal_of_paracompact_t2
527
527
-- porting note(https://github.com/leanprover/std4/issues/116):
528
528
-- split `rcases` into `have` + `rcases`
0 commit comments