@@ -396,8 +396,9 @@ theorem card_sylow_dvd_index [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G)
396
396
((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans
397
397
(index_dvd_of_le le_normalizer)
398
398
399
- theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal]
400
- [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by
399
+ /-- Auxilliary lemma for `Sylow.not_dvd_index` which is strictly stronger. -/
400
+ private theorem Sylow.not_dvd_index_aux [hp : Fact p.Prime] (P : Sylow p G) [P.Normal]
401
+ [P.FiniteIndex] : ¬ p ∣ P.index := by
401
402
intro h
402
403
rw [index_eq_card (P : Subgroup G)] at h
403
404
obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card' (G := G ⧸ (P : Subgroup G)) p h
@@ -413,15 +414,27 @@ theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup
413
414
QuotientGroup.ker_mk'] at hp
414
415
exact hp.ne' (P.3 hQ hp.le)
415
416
416
- theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G)
417
- (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0 ) : ¬p ∣ (P : Subgroup G).index := by
417
+ /-- A Sylow p-subgroup has index indivisible by `p`, assuming [N(P) : P] < ∞. -/
418
+ theorem Sylow.not_dvd_index' [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G)
419
+ (hP : P.relindex P.normalizer ≠ 0 ) : ¬ p ∣ P.index := by
418
420
rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer]
419
421
haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal :=
420
422
Subgroup.normal_in_normalizer
421
423
haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩
422
- replace hP := not_dvd_index_sylow' (P.subtype le_normalizer)
424
+ replace hP := not_dvd_index_aux (P.subtype le_normalizer)
423
425
exact hp.1 .not_dvd_mul hP (not_dvd_card_sylow p G)
424
426
427
+ @[deprecated (since := "2024-11-03")]
428
+ alias not_dvd_index_sylow := Sylow.not_dvd_index'
429
+
430
+ /-- A Sylow p-subgroup has index indivisible by `p`. -/
431
+ theorem Sylow.not_dvd_index [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [P.FiniteIndex] :
432
+ ¬ p ∣ P.index :=
433
+ P.not_dvd_index' Nat.card_pos.ne'
434
+
435
+ @[deprecated (since := "2024-11-03")]
436
+ alias not_dvd_index_sylow' := Sylow.not_dvd_index
437
+
425
438
/-- **Frattini's Argument** : If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup
426
439
of `N`, then `N_G(P) ⊔ N = G`. -/
427
440
theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal]
@@ -636,8 +649,7 @@ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {
636
649
theorem pow_dvd_card_of_pow_dvd_card [Finite G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G)
637
650
(hdvd : p ^ n ∣ Nat.card G) : p ^ n ∣ Nat.card P := by
638
651
rw [← index_mul_card P.1 ] at hdvd
639
- exact (hp.1 .coprime_pow_of_not_dvd
640
- (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left hdvd
652
+ exact (hp.1 .coprime_pow_of_not_dvd P.not_dvd_index).symm.dvd_of_dvd_mul_left hdvd
641
653
642
654
theorem dvd_card_of_dvd_card [Finite G] {p : ℕ} [Fact p.Prime] (P : Sylow p G)
643
655
(hdvd : p ∣ Nat.card G) : p ∣ Nat.card P := by
@@ -649,7 +661,7 @@ theorem dvd_card_of_dvd_card [Finite G] {p : ℕ} [Fact p.Prime] (P : Sylow p G)
649
661
theorem card_coprime_index [Finite G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) :
650
662
(Nat.card P).Coprime (index (P : Subgroup G)) :=
651
663
let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2
652
- hn.symm ▸ (hp.1 .coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite) ).symm
664
+ hn.symm ▸ (hp.1 .coprime_pow_of_not_dvd P.not_dvd_index ).symm
653
665
654
666
theorem ne_bot_of_dvd_card [Finite G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G)
655
667
(hdvd : p ∣ Nat.card G) : (P : Subgroup G) ≠ ⊥ := by
0 commit comments