@@ -57,11 +57,11 @@ theorem coe_inj : (a : WithBot α) = b ↔ a = b :=
57
57
Option.some_inj
58
58
#align with_bot.coe_inj WithBot.coe_inj
59
59
60
- protected theorem _root_.WithBot. forall {p : WithBot α → Prop } : (∀ x, p x) ↔ p ⊥ ∧ ∀ x : α, p x :=
60
+ protected theorem « forall » {p : WithBot α → Prop } : (∀ x, p x) ↔ p ⊥ ∧ ∀ x : α, p x :=
61
61
Option.forall
62
62
#align with_bot.forall WithBot.forall
63
63
64
- protected theorem _root_.WithBot. exists {p : WithBot α → Prop } : (∃ x, p x) ↔ p ⊥ ∨ ∃ x : α, p x :=
64
+ protected theorem « exists » {p : WithBot α → Prop } : (∃ x, p x) ↔ p ⊥ ∨ ∃ x : α, p x :=
65
65
Option.exists
66
66
#align with_bot.exists WithBot.exists
67
67
@@ -93,16 +93,16 @@ def recBotCoe {C : WithBot α → Sort _} (h₁ : C ⊥) (h₂ : ∀ a : α, C a
93
93
#align with_bot.rec_bot_coe WithBot.recBotCoe
94
94
95
95
@[simp]
96
- theorem rec_bot_coe_bot {C : WithBot α → Sort _} (d : C ⊥) (f : ∀ a : α, C a) :
96
+ theorem recBotCoe_bot {C : WithBot α → Sort _} (d : C ⊥) (f : ∀ a : α, C a) :
97
97
@recBotCoe _ C d f ⊥ = d :=
98
98
rfl
99
- #align with_bot.rec_bot_coe_bot WithBot.rec_bot_coe_bot
99
+ #align with_bot.rec_bot_coe_bot WithBot.recBotCoe_bot
100
100
101
101
@[simp]
102
- theorem rec_bot_coe_coe {C : WithBot α → Sort _} (d : C ⊥) (f : ∀ a : α, C a) (x : α) :
102
+ theorem recBotCoe_coe {C : WithBot α → Sort _} (d : C ⊥) (f : ∀ a : α, C a) (x : α) :
103
103
@recBotCoe _ C d f ↑x = f x :=
104
104
rfl
105
- #align with_bot.rec_bot_coe_coe WithBot.rec_bot_coe_coe
105
+ #align with_bot.rec_bot_coe_coe WithBot.recBotCoe_coe
106
106
107
107
/-- Specialization of `option.get_or_else` to values in `with_bot α` that respects API boundaries.
108
108
-/
@@ -295,9 +295,9 @@ instance [PartialOrder α] : PartialOrder (WithBot α) :=
295
295
rw [le_antisymm h₁' h₂']
296
296
}
297
297
298
- theorem coe_strict_mono [Preorder α] : StrictMono (fun (a : α) => (a : WithBot α)) :=
298
+ theorem coe_strictMono [Preorder α] : StrictMono (fun (a : α) => (a : WithBot α)) :=
299
299
fun _ _ => coe_lt_coe.2
300
- #align with_bot.coe_strict_mono WithBot.coe_strict_mono
300
+ #align with_bot.coe_strict_mono WithBot.coe_strictMono
301
301
302
302
theorem coe_mono [Preorder α] : Monotone (fun (a : α) => (a : WithBot α)) :=
303
303
fun _ _ => coe_le_coe.2
@@ -320,21 +320,21 @@ theorem monotone_map_iff [Preorder α] [Preorder β] {f : α → β} :
320
320
321
321
alias monotone_map_iff ↔ _ _root_.monotone.with_bot_map
322
322
323
- theorem strict_mono_iff [Preorder α] [Preorder β] {f : WithBot α → β} :
323
+ theorem strictMono_iff [Preorder α] [Preorder β] {f : WithBot α → β} :
324
324
StrictMono f ↔ StrictMono (λ a => f a : α → β) ∧ ∀ x : α, f ⊥ < f x :=
325
- ⟨fun h => ⟨h.comp WithBot.coe_strict_mono , fun _ => h (bot_lt_coe _)⟩, fun h =>
325
+ ⟨fun h => ⟨h.comp WithBot.coe_strictMono , fun _ => h (bot_lt_coe _)⟩, fun h =>
326
326
WithBot.forall.2
327
327
⟨WithBot.forall.2 ⟨flip absurd (lt_irrefl _), fun x _ => h.2 x⟩, fun _ =>
328
328
WithBot.forall.2 ⟨fun h => (not_lt_bot h).elim, fun _ hle => h.1 (coe_lt_coe.1 hle)⟩⟩⟩
329
- #align with_bot.strict_mono_iff WithBot.strict_mono_iff
329
+ #align with_bot.strict_mono_iff WithBot.strictMono_iff
330
330
331
331
@[simp]
332
- theorem strict_mono_map_iff [Preorder α] [Preorder β] {f : α → β} :
332
+ theorem strictMono_map_iff [Preorder α] [Preorder β] {f : α → β} :
333
333
StrictMono (WithBot.map f) ↔ StrictMono f :=
334
- strict_mono_iff .trans <| by simp [StrictMono, bot_lt_coe]
335
- #align with_bot.strict_mono_map_iff WithBot.strict_mono_map_iff
334
+ strictMono_iff .trans <| by simp [StrictMono, bot_lt_coe]
335
+ #align with_bot.strict_mono_map_iff WithBot.strictMono_map_iff
336
336
337
- alias strict_mono_map_iff ↔ _ _root_.strict_mono .with_bot_map
337
+ alias strictMono_map_iff ↔ _ _root_.StrictMono .with_bot_map
338
338
339
339
theorem map_le_iff [Preorder α] [Preorder β] (f : α → β) (mono_iff : ∀ {a b}, f a ≤ f b ↔ a ≤ b) :
340
340
∀ a b : WithBot α, a.map f ≤ b.map f ↔ a ≤ b
@@ -416,27 +416,27 @@ instance [DistribLattice α] : DistribLattice (WithBot α) :=
416
416
| (a₁ : α), (a₂ : α), ⊥ => inf_le_right
417
417
| (a₁ : α), (a₂ : α), (a₃ : α) => coe_le_coe.mpr le_sup_inf }
418
418
419
- instance decidableLe [LE α] [@DecidableRel α (· ≤ ·)] : @DecidableRel (WithBot α) (· ≤ ·)
419
+ instance decidableLE [LE α] [@DecidableRel α (· ≤ ·)] : @DecidableRel (WithBot α) (· ≤ ·)
420
420
| none, x => isTrue fun a h => Option.noConfusion h
421
421
| Option.some x, Option.some y =>
422
422
if h : x ≤ y then isTrue (some_le_some.2 h) else isFalse <| by simp [*]
423
423
| Option.some x, none => isFalse fun h => by rcases h x rfl with ⟨y, ⟨_⟩, _⟩
424
- #align with_bot.decidable_le WithBot.decidableLe
424
+ #align with_bot.decidable_le WithBot.decidableLE
425
425
426
- instance decidableLt [LT α] [@DecidableRel α (· < ·)] : @DecidableRel (WithBot α) (· < ·)
426
+ instance decidableLT [LT α] [@DecidableRel α (· < ·)] : @DecidableRel (WithBot α) (· < ·)
427
427
| none, Option.some x => isTrue <| by exists x, rfl ; rintro _ ⟨⟩
428
428
| Option.some x, Option.some y =>
429
429
if h : x < y then isTrue <| by simp [*] else isFalse <| by simp [*]
430
430
| x, none => isFalse <| by rintro ⟨a, ⟨⟨⟩⟩⟩
431
- #align with_bot.decidable_lt WithBot.decidableLt
431
+ #align with_bot.decidable_lt WithBot.decidableLT
432
432
433
- instance is_total_le [LE α] [IsTotal α (· ≤ ·)] : IsTotal (WithBot α) (· ≤ ·) :=
433
+ instance isTotal_le [LE α] [IsTotal α (· ≤ ·)] : IsTotal (WithBot α) (· ≤ ·) :=
434
434
⟨fun a b =>
435
435
match a, b with
436
436
| none, _ => Or.inl bot_le
437
437
| _, none => Or.inr bot_le
438
438
| Option.some x, Option.some y => (total_of (· ≤ ·) x y).imp some_le_some.2 some_le_some.2 ⟩
439
- #align with_bot.is_total_le WithBot.is_total_le
439
+ #align with_bot.is_total_le WithBot.isTotal_le
440
440
441
441
instance [LinearOrder α] : LinearOrder (WithBot α) :=
442
442
Lattice.toLinearOrder _
@@ -453,7 +453,7 @@ theorem coe_max [LinearOrder α] (x y : α) : ((max x y : α) : WithBot α) = ma
453
453
rfl
454
454
#align with_bot.coe_max WithBot.coe_max
455
455
456
- theorem well_founded_lt [Preorder α] (h : @WellFounded α (· < ·)) :
456
+ theorem wellFounded_lt [Preorder α] (h : @WellFounded α (· < ·)) :
457
457
@WellFounded (WithBot α) (· < ·) :=
458
458
have acc_bot : Acc ((· < ·) : WithBot α → WithBot α → Prop ) ⊥ :=
459
459
Acc.intro _ fun _ ha => (not_le_of_gt ha bot_le).elim
@@ -471,7 +471,7 @@ theorem well_founded_lt [Preorder α] (h : @WellFounded α (· < ·)) :
471
471
Acc.intro _ fun c =>
472
472
Option.recOn c (fun _ => acc_bot) fun _ hc => ih _
473
473
(some_lt_some.1 hc) (lt_trans hc hba))⟩
474
- #align with_bot.well_founded_lt WithBot.well_founded_lt
474
+ #align with_bot.well_founded_lt WithBot.wellFounded_lt
475
475
476
476
instance [LT α] [DenselyOrdered α] [NoMinOrder α] : DenselyOrdered (WithBot α) :=
477
477
⟨fun a b =>
@@ -545,11 +545,11 @@ instance : Top (WithTop α) :=
545
545
instance : Inhabited (WithTop α) :=
546
546
⟨⊤⟩
547
547
548
- protected theorem _root_.WithTop. forall {p : WithTop α → Prop } : (∀ x, p x) ↔ p ⊤ ∧ ∀ x : α, p x :=
548
+ protected theorem « forall » {p : WithTop α → Prop } : (∀ x, p x) ↔ p ⊤ ∧ ∀ x : α, p x :=
549
549
Option.forall
550
550
#align with_top.forall WithTop.forall
551
551
552
- protected theorem _root_.WithTop. exists {p : WithTop α → Prop } : (∃ x, p x) ↔ p ⊤ ∨ ∃ x : α, p x :=
552
+ protected theorem « exists » {p : WithTop α → Prop } : (∃ x, p x) ↔ p ⊤ ∨ ∃ x : α, p x :=
553
553
Option.exists
554
554
#align with_top.exists WithTop.exists
555
555
@@ -579,16 +579,16 @@ def recTopCoe {C : WithTop α → Sort _} (h₁ : C ⊤) (h₂ : ∀ a : α, C a
579
579
#align with_top.rec_top_coe WithTop.recTopCoe
580
580
581
581
@[simp]
582
- theorem rec_top_coe_top {C : WithTop α → Sort _} (d : C ⊤) (f : ∀ a : α, C a) :
582
+ theorem recTopCoe_top {C : WithTop α → Sort _} (d : C ⊤) (f : ∀ a : α, C a) :
583
583
@recTopCoe _ C d f ⊤ = d :=
584
584
rfl
585
- #align with_top.rec_top_coe_top WithTop.rec_top_coe_top
585
+ #align with_top.rec_top_coe_top WithTop.recTopCoe_top
586
586
587
587
@[simp]
588
- theorem rec_top_coe_coe {C : WithTop α → Sort _} (d : C ⊤) (f : ∀ a : α, C a) (x : α) :
588
+ theorem recTopCoe_coe {C : WithTop α → Sort _} (d : C ⊤) (f : ∀ a : α, C a) (x : α) :
589
589
@recTopCoe _ C d f ↑x = f x :=
590
590
rfl
591
- #align with_top.rec_top_coe_coe WithTop.rec_top_coe_coe
591
+ #align with_top.rec_top_coe_coe WithTop.recTopCoe_coe
592
592
593
593
/-- `WithTop.toDual` is the equivalence sending `⊤` to `⊥` and any `a : α` to `toDual a : αᵒᵈ`.
594
594
See `WithTop.toDualBotEquiv` for the related order-iso.
@@ -1045,9 +1045,9 @@ instance [PartialOrder α] : PartialOrder (WithTop α) :=
1045
1045
simp_rw [← toDual_le_toDual_iff]
1046
1046
exact Function.swap le_antisymm }
1047
1047
1048
- theorem coe_strict_mono [Preorder α] : StrictMono (fun a : α => (a : WithTop α)) :=
1048
+ theorem coe_strictMono [Preorder α] : StrictMono (fun a : α => (a : WithTop α)) :=
1049
1049
fun _ _ => some_lt_some.2
1050
- #align with_top.coe_strict_mono WithTop.coe_strict_mono
1050
+ #align with_top.coe_strict_mono WithTop.coe_strictMono
1051
1051
1052
1052
theorem coe_mono [Preorder α] : Monotone (fun a : α => (a : WithTop α)) :=
1053
1053
fun _ _ => coe_le_coe.2
@@ -1069,21 +1069,21 @@ theorem monotone_map_iff [Preorder α] [Preorder β] {f : α → β} :
1069
1069
1070
1070
alias monotone_map_iff ↔ _ _root_.monotone.with_top_map
1071
1071
1072
- theorem strict_mono_iff [Preorder α] [Preorder β] {f : WithTop α → β} :
1072
+ theorem strictMono_iff [Preorder α] [Preorder β] {f : WithTop α → β} :
1073
1073
StrictMono f ↔ StrictMono (fun (a : α) => f a) ∧ ∀ x : α, f x < f ⊤ :=
1074
- ⟨fun h => ⟨h.comp WithTop.coe_strict_mono , fun _ => h (coe_lt_top _)⟩, fun h =>
1074
+ ⟨fun h => ⟨h.comp WithTop.coe_strictMono , fun _ => h (coe_lt_top _)⟩, fun h =>
1075
1075
WithTop.forall.2
1076
1076
⟨WithTop.forall.2 ⟨flip absurd (lt_irrefl _), fun _ h => (not_top_lt h).elim⟩, fun x =>
1077
1077
WithTop.forall.2 ⟨fun _ => h.2 x, fun _ hle => h.1 (coe_lt_coe.1 hle)⟩⟩⟩
1078
- #align with_top.strict_mono_iff WithTop.strict_mono_iff
1078
+ #align with_top.strict_mono_iff WithTop.strictMono_iff
1079
1079
1080
1080
@[simp]
1081
- theorem strict_mono_map_iff [Preorder α] [Preorder β] {f : α → β} :
1081
+ theorem strictMono_map_iff [Preorder α] [Preorder β] {f : α → β} :
1082
1082
StrictMono (WithTop.map f) ↔ StrictMono f :=
1083
- strict_mono_iff .trans <| by simp [StrictMono, coe_lt_top]
1084
- #align with_top.strict_mono_map_iff WithTop.strict_mono_map_iff
1083
+ strictMono_iff .trans <| by simp [StrictMono, coe_lt_top]
1084
+ #align with_top.strict_mono_map_iff WithTop.strictMono_map_iff
1085
1085
1086
- alias strict_mono_map_iff ↔ _ _root_.strict_mono .with_top_map
1086
+ alias strictMono_map_iff ↔ _ _root_.StrictMono .with_top_map
1087
1087
1088
1088
theorem map_le_iff [Preorder α] [Preorder β] (f : α → β) (a b : WithTop α)
1089
1089
(mono_iff : ∀ {a b}, f a ≤ f b ↔ a ≤ b) :
@@ -1156,11 +1156,11 @@ instance decidableLt [LT α] [@DecidableRel α (· < ·)] :
1156
1156
decidable_of_decidable_of_iff toDual_lt_toDual_iff
1157
1157
#align with_top.decidable_lt WithTop.decidableLt
1158
1158
1159
- instance is_total_le [LE α] [IsTotal α (· ≤ ·)] : IsTotal (WithTop α) (· ≤ ·) :=
1159
+ instance isTotal_le [LE α] [IsTotal α (· ≤ ·)] : IsTotal (WithTop α) (· ≤ ·) :=
1160
1160
⟨fun _ _ => by
1161
1161
simp_rw [← toDual_le_toDual_iff]
1162
1162
exact total_of _ _ _⟩
1163
- #align with_top.is_total_le WithTop.is_total_le
1163
+ #align with_top.is_total_le WithTop.isTotal_le
1164
1164
1165
1165
instance [LinearOrder α] : LinearOrder (WithTop α) :=
1166
1166
Lattice.toLinearOrder _
@@ -1175,7 +1175,7 @@ theorem coe_max [LinearOrder α] (x y : α) : (↑(max x y) : WithTop α) = max
1175
1175
rfl
1176
1176
#align with_top.coe_max WithTop.coe_max
1177
1177
1178
- theorem well_founded_lt [Preorder α] (h : @WellFounded α (· < ·)) :
1178
+ theorem wellFounded_lt [Preorder α] (h : @WellFounded α (· < ·)) :
1179
1179
@WellFounded (WithTop α) (· < ·) :=
1180
1180
have acc_some : ∀ a : α, Acc ((· < ·) : WithTop α → WithTop α → Prop ) (some a) := fun a =>
1181
1181
Acc.intro _
@@ -1189,15 +1189,15 @@ theorem well_founded_lt [Preorder α] (h : @WellFounded α (· < ·)) :
1189
1189
⟨fun a =>
1190
1190
Option.recOn a (Acc.intro _ fun y => Option.recOn y
1191
1191
(fun h => (lt_irrefl _ h).elim) fun _ _ => acc_some _) acc_some⟩
1192
- #align with_top.well_founded_lt WithTop.well_founded_lt
1192
+ #align with_top.well_founded_lt WithTop.wellFounded_lt
1193
1193
1194
1194
open OrderDual
1195
1195
1196
- theorem well_founded_gt [Preorder α] (h : @WellFounded α (· > ·)) :
1196
+ theorem wellFounded_gt [Preorder α] (h : @WellFounded α (· > ·)) :
1197
1197
@WellFounded (WithTop α) (· > ·) :=
1198
1198
⟨fun a => by
1199
1199
-- ideally, use rel_hom_class.acc, but that is defined later
1200
- have : Acc (· < ·) (WithTop.toDual a) := WellFounded.apply (WithBot.well_founded_lt
1200
+ have : Acc (· < ·) (WithTop.toDual a) := WellFounded.apply (WithBot.wellFounded_lt
1201
1201
(by convert h)) _
1202
1202
revert this
1203
1203
generalize ha : WithBot.toDual a = b
@@ -1206,70 +1206,70 @@ theorem well_founded_gt [Preorder α] (h : @WellFounded α (· > ·)) :
1206
1206
induction' ac with _ H IH generalizing a
1207
1207
subst ha
1208
1208
exact ⟨_, fun a' h => IH (WithTop.toDual a') (toDual_lt_toDual.mpr h) _ rfl⟩⟩
1209
- #align with_top.well_founded_gt WithTop.well_founded_gt
1209
+ #align with_top.well_founded_gt WithTop.wellFounded_gt
1210
1210
1211
- theorem _root_.WithBot.well_founded_gt [Preorder α] (h : @WellFounded α (· > ·)) :
1211
+ theorem _root_.WithBot.wellFounded_gt [Preorder α] (h : @WellFounded α (· > ·)) :
1212
1212
@WellFounded (WithBot α) (· > ·) :=
1213
1213
⟨fun a => by
1214
1214
-- ideally, use rel_hom_class.acc, but that is defined later
1215
1215
have : Acc (· < ·) (WithBot.toDual a) :=
1216
- WellFounded.apply (WithTop.well_founded_lt (by convert h)) _
1216
+ WellFounded.apply (WithTop.wellFounded_lt (by convert h)) _
1217
1217
revert this
1218
1218
generalize ha : WithBot.toDual a = b
1219
1219
intro ac
1220
1220
dsimp at ac
1221
1221
induction' ac with _ H IH generalizing a
1222
1222
subst ha
1223
1223
exact ⟨_, fun a' h => IH (WithBot.toDual a') (toDual_lt_toDual.mpr h) _ rfl⟩⟩
1224
- #align with_bot.well_founded_gt WithBot.well_founded_gt
1224
+ #align with_bot.well_founded_gt WithBot.wellFounded_gt
1225
1225
1226
- instance Trichotomous .lt [Preorder α] [IsTrichotomous α (· < ·)] :
1226
+ instance trichotomous .lt [Preorder α] [IsTrichotomous α (· < ·)] :
1227
1227
IsTrichotomous (WithTop α) (· < ·) :=
1228
1228
⟨by
1229
1229
rintro (a | a) (b | b)
1230
1230
. simp
1231
1231
. simp
1232
1232
. simp
1233
1233
. simpa [some_eq_coe, IsTrichotomous, coe_eq_coe] using @trichotomous α (. < .) _ a b⟩
1234
- #align with_top.trichotomous.lt WithTop.Trichotomous .lt
1234
+ #align with_top.trichotomous.lt WithTop.trichotomous .lt
1235
1235
1236
1236
instance IsWellOrder.lt [Preorder α] [h : IsWellOrder α (· < ·)] :
1237
- IsWellOrder (WithTop α) (· < ·) where wf := well_founded_lt h.wf
1237
+ IsWellOrder (WithTop α) (· < ·) where wf := wellFounded_lt h.wf
1238
1238
#align with_top.is_well_order.lt WithTop.IsWellOrder.lt
1239
1239
1240
- instance Trichotomous .gt [Preorder α] [IsTrichotomous α (· > ·)] :
1240
+ instance trichotomous .gt [Preorder α] [IsTrichotomous α (· > ·)] :
1241
1241
IsTrichotomous (WithTop α) (· > ·) :=
1242
1242
⟨by
1243
1243
rintro (a | a) (b | b)
1244
1244
. simp
1245
1245
. simp
1246
1246
. simp
1247
1247
. simpa [some_eq_coe, IsTrichotomous, coe_eq_coe] using @trichotomous α (. > .) _ a b⟩
1248
- #align with_top.trichotomous.gt WithTop.Trichotomous .gt
1248
+ #align with_top.trichotomous.gt WithTop.trichotomous .gt
1249
1249
1250
1250
instance IsWellOrder.gt [Preorder α] [h : IsWellOrder α (· > ·)] :
1251
- IsWellOrder (WithTop α) (· > ·) where wf := well_founded_gt h.wf
1251
+ IsWellOrder (WithTop α) (· > ·) where wf := wellFounded_gt h.wf
1252
1252
#align with_top.is_well_order.gt WithTop.IsWellOrder.gt
1253
1253
1254
1254
instance _root_.WithBot.trichotomous.lt [Preorder α] [h : IsTrichotomous α (· < ·)] :
1255
1255
IsTrichotomous (WithBot α) (· < ·) :=
1256
- @WithTop.Trichotomous .gt αᵒᵈ _ h
1256
+ @WithTop.trichotomous .gt αᵒᵈ _ h
1257
1257
#align with_bot.trichotomous.lt WithBot.trichotomous.lt
1258
1258
1259
- instance _root_.WithBot.is_well_order .lt [Preorder α] [h : IsWellOrder α (· < ·)] :
1259
+ instance _root_.WithBot.isWellOrder .lt [Preorder α] [h : IsWellOrder α (· < ·)] :
1260
1260
IsWellOrder (WithBot α) (· < ·) :=
1261
1261
@WithTop.IsWellOrder.gt αᵒᵈ _ h
1262
- #align with_bot.is_well_order.lt WithBot.is_well_order .lt
1262
+ #align with_bot.is_well_order.lt WithBot.isWellOrder .lt
1263
1263
1264
1264
instance _root_.WithBot.trichotomous.gt [Preorder α] [h : IsTrichotomous α (· > ·)] :
1265
1265
IsTrichotomous (WithBot α) (· > ·) :=
1266
- @WithTop.Trichotomous .lt αᵒᵈ _ h
1266
+ @WithTop.trichotomous .lt αᵒᵈ _ h
1267
1267
#align with_bot.trichotomous.gt WithBot.trichotomous.gt
1268
1268
1269
- instance _root_.WithBot.is_well_order .gt [Preorder α] [h : IsWellOrder α (· > ·)] :
1269
+ instance _root_.WithBot.isWellOrder .gt [Preorder α] [h : IsWellOrder α (· > ·)] :
1270
1270
IsWellOrder (WithBot α) (· > ·) :=
1271
1271
@WithTop.IsWellOrder.lt αᵒᵈ _ h
1272
- #align with_top._root_.with_bot.is_well_order.gt WithBot.is_well_order .gt
1272
+ #align with_top._root_.with_bot.is_well_order.gt WithBot.isWellOrder .gt
1273
1273
1274
1274
instance [LT α] [DenselyOrdered α] [NoMaxOrder α] : DenselyOrdered (WithTop α) :=
1275
1275
instDenselyOrderedOrderDualInstLTOrderDual (WithBot αᵒᵈ)
0 commit comments