|
| 1 | +/- |
| 2 | +Copyright (c) 2024 Yaël Dillies, Andrew Yang. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Yaël Dillies, Andrew Yang |
| 5 | +-/ |
| 6 | +import Mathlib.Order.SuccPred.Basic |
| 7 | + |
| 8 | +/-! |
| 9 | +# Successor function on `WithBot` |
| 10 | +
|
| 11 | +This file defines the successor of `a : WithBot α` as an element of `α`, and dually for `WithTop`. |
| 12 | +-/ |
| 13 | + |
| 14 | +namespace WithBot |
| 15 | +variable {α : Type*} [Preorder α] [OrderBot α] [SuccOrder α] {x y : WithBot α} |
| 16 | + |
| 17 | +/-- The successor of `a : WithBot α` as an element of `α`. -/ |
| 18 | +def succ (a : WithBot α) : α := a.recBotCoe ⊥ Order.succ |
| 19 | + |
| 20 | +/-- Not to be confused with `WithBot.orderSucc_bot`, which is about `Order.succ`. -/ |
| 21 | +@[simp] lemma succ_bot : succ (⊥ : WithBot α) = ⊥ := rfl |
| 22 | + |
| 23 | +/-- Not to be confused with `WithBot.orderSucc_coe`, which is about `Order.succ`. -/ |
| 24 | +@[simp] lemma succ_coe (a : α) : succ (a : WithBot α) = Order.succ a := rfl |
| 25 | + |
| 26 | +lemma succ_eq_succ : ∀ a : WithBot α, succ a = Order.succ a |
| 27 | + | ⊥ => rfl |
| 28 | + | (a : α) => rfl |
| 29 | + |
| 30 | +lemma succ_mono : Monotone (succ : WithBot α → α) |
| 31 | + | ⊥, _, _ => by simp |
| 32 | + | (a : α), ⊥, hab => by simp at hab |
| 33 | + | (a : α), (b : α), hab => Order.succ_le_succ (by simpa using hab) |
| 34 | + |
| 35 | +lemma succ_strictMono [NoMaxOrder α] : StrictMono (succ : WithBot α → α) |
| 36 | + | ⊥, (b : α), hab => by simp |
| 37 | + | (a : α), (b : α), hab => Order.succ_lt_succ (by simpa using hab) |
| 38 | + |
| 39 | +@[gcongr] lemma succ_le_succ (hxy : x ≤ y) : x.succ ≤ y.succ := succ_mono hxy |
| 40 | +@[gcongr] lemma succ_lt_succ [NoMaxOrder α] (hxy : x < y) : x.succ < y.succ := succ_strictMono hxy |
| 41 | + |
| 42 | +end WithBot |
| 43 | + |
| 44 | +namespace WithTop |
| 45 | +variable {α : Type*} [Preorder α] [OrderTop α] [PredOrder α] {x y : WithTop α} |
| 46 | + |
| 47 | +/-- The predessor of `a : WithTop α` as an element of `α`. -/ |
| 48 | +def pred (a : WithTop α) : α := a.recTopCoe ⊤ Order.pred |
| 49 | + |
| 50 | +/-- Not to be confused with `WithTop.orderPred_top`, which is about `Order.pred`. -/ |
| 51 | +@[simp] lemma pred_top : pred (⊤ : WithTop α) = ⊤ := rfl |
| 52 | + |
| 53 | +/-- Not to be confused with `WithTop.orderPred_coe`, which is about `Order.pred`. -/ |
| 54 | +@[simp] lemma pred_coe (a : α) : pred (a : WithTop α) = Order.pred a := rfl |
| 55 | + |
| 56 | +lemma pred_eq_pred : ∀ a : WithTop α, pred a = Order.pred a |
| 57 | + | ⊤ => rfl |
| 58 | + | (a : α) => rfl |
| 59 | + |
| 60 | +lemma pred_mono : Monotone (pred : WithTop α → α) |
| 61 | + | _, ⊤, _ => by simp |
| 62 | + | ⊤, (a : α), hab => by simp at hab |
| 63 | + | (a : α), (b : α), hab => Order.pred_le_pred (by simpa using hab) |
| 64 | + |
| 65 | +lemma pred_strictMono [NoMinOrder α] : StrictMono (pred : WithTop α → α) |
| 66 | + | (b : α), ⊤, hab => by simp |
| 67 | + | (a : α), (b : α), hab => Order.pred_lt_pred (by simpa using hab) |
| 68 | + |
| 69 | +@[gcongr] lemma pred_le_pred (hxy : x ≤ y) : x.pred ≤ y.pred := pred_mono hxy |
| 70 | +@[gcongr] lemma pred_lt_pred [NoMinOrder α] (hxy : x < y) : x.pred < y.pred := pred_strictMono hxy |
| 71 | + |
| 72 | +end WithTop |
0 commit comments