@@ -644,6 +644,9 @@ lemma map_monotone : Monotone (Subgraph.map f) := fun _ _ ↦ map_mono
644
644
theorem map_sup (f : G →g G') (H₁ H₂ : G.Subgraph) : (H₁ ⊔ H₂).map f = H₁.map f ⊔ H₂.map f := by
645
645
ext <;> simp [Set.image_union, map_adj, sup_adj, Relation.Map, or_and_right, exists_or]
646
646
647
+ @[simp] lemma map_iso_top {H : SimpleGraph W} (e : G ≃g H) : Subgraph.map e.toHom ⊤ = ⊤ := by
648
+ ext <;> simp [Relation.Map, e.apply_eq_iff_eq_symm_apply, ← e.map_rel_iff]
649
+
647
650
@[simp] lemma edgeSet_map (f : G →g G') (H : G.Subgraph) :
648
651
(H.map f).edgeSet = Sym2.map f '' H.edgeSet := Sym2.fromRel_relationMap ..
649
652
@@ -669,6 +672,9 @@ theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph
669
672
intro
670
673
apply h.2
671
674
675
+ @[simp] lemma comap_equiv_top {H : SimpleGraph W} (f : G →g H) : Subgraph.comap f ⊤ = ⊤ := by
676
+ ext <;> simp +contextual [f.map_adj]
677
+
672
678
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) :
673
679
H.map f ≤ H' ↔ H ≤ H'.comap f := by
674
680
refine ⟨fun h ↦ ⟨fun v hv ↦ ?_, fun v w hvw ↦ ?_⟩, fun h ↦ ⟨fun v ↦ ?_, fun v w ↦ ?_⟩⟩
@@ -718,19 +724,26 @@ protected def hom (x : Subgraph G) : x.coe →g G where
718
724
@[simp] lemma coe_hom (x : Subgraph G) :
719
725
(x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl
720
726
721
- theorem hom.injective {x : Subgraph G} : Function.Injective x.hom :=
727
+ theorem hom_injective {x : Subgraph G} : Function.Injective x.hom :=
722
728
fun _ _ ↦ Subtype.ext
723
729
730
+ @[deprecated (since := "2025-03-15")] alias hom.injective := hom_injective
731
+
732
+ @[simp] lemma map_hom_top (G' : G.Subgraph) : Subgraph.map G'.hom ⊤ = G' := by
733
+ aesop (add unfold safe Relation.Map, unsafe G'.edge_vert, unsafe Adj.symm)
734
+
724
735
/-- There is an induced injective homomorphism of a subgraph of `G` as
725
736
a spanning subgraph into `G`. -/
726
737
@[simps]
727
738
def spanningHom (x : Subgraph G) : x.spanningCoe →g G where
728
739
toFun := id
729
740
map_rel' := x.adj_sub
730
741
731
- theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom :=
742
+ theorem spanningHom_injective {x : Subgraph G} : Function.Injective x.spanningHom :=
732
743
fun _ _ ↦ id
733
744
745
+ @[deprecated (since := "2025-03-15")] alias spanningHom.injective := spanningHom_injective
746
+
734
747
theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) :
735
748
x.neighborSet v ⊆ y.neighborSet v :=
736
749
fun _ h' ↦ h.2 h'
0 commit comments