@@ -120,53 +120,66 @@ theorem map_id_comp {A B C : Rep k G} (φ : A ⟶ B) (ψ : B ⟶ C) (n : ℕ) :
120
120
121
121
/-- Given a group homomorphism `f : G →* H` and a representation morphism `φ : Res(f)(A) ⟶ B`,
122
122
this is the induced map sending `x : H → A` to `(g : G) ↦ φ (x (f g))`. -/
123
- noncomputable abbrev fOne : (H → A) →ₗ[k] (G → B) := φ.hom.hom.compLeft G ∘ₗ LinearMap.funLeft k A f
123
+ noncomputable abbrev fOne :
124
+ ModuleCat.of k (H → A) ⟶ ModuleCat.of k (G → B) :=
125
+ ModuleCat.ofHom <| φ.hom.hom.compLeft G ∘ₗ LinearMap.funLeft k A f
124
126
125
127
/-- Given a group homomorphism `f : G →* H` and a representation morphism `φ : Res(f)(A) ⟶ B`,
126
128
this is the induced map sending `x : H × H → A` to `(g₁, g₂ : G × G) ↦ φ (x (f g₁, f g₂))`. -/
127
- noncomputable abbrev fTwo : (H × H → A) →ₗ[k] (G × G → B) :=
128
- φ.hom.hom.compLeft (G × G) ∘ₗ LinearMap.funLeft k A (Prod.map f f)
129
+ noncomputable abbrev fTwo :
130
+ ModuleCat.of k (H × H → A) ⟶ ModuleCat.of k (G × G → B) :=
131
+ ModuleCat.ofHom <| φ.hom.hom.compLeft (G × G) ∘ₗ LinearMap.funLeft k A (Prod.map f f)
129
132
130
133
/-- Given a group homomorphism `f : G →* H` and a representation morphism `φ : Res(f)(A) ⟶ B`,
131
134
this is the induced map sending `x : H × H × H → A` to
132
135
`(g₁, g₂, g₃ : G × G × G) ↦ φ (x (f g₁, f g₂, f g₃))`. -/
133
- noncomputable abbrev fThree : (H × H × H → A) →ₗ[k] (G × G × G → B) :=
134
- φ.hom.hom.compLeft (G × G × G) ∘ₗ LinearMap.funLeft k A (Prod.map f (Prod.map f f))
136
+ noncomputable abbrev fThree :
137
+ ModuleCat.of k (H × H × H → A) ⟶ ModuleCat.of k (G × G × G → B) :=
138
+ ModuleCat.ofHom <|
139
+ φ.hom.hom.compLeft (G × G × G) ∘ₗ LinearMap.funLeft k A (Prod.map f (Prod.map f f))
135
140
136
141
@[reassoc]
137
- lemma cochainsMap_f_0_comp_zeroCochainsLequiv :
138
- (cochainsMap f φ).f 0 ≫ (zeroCochainsLequiv B).toModuleIso.hom =
139
- (zeroCochainsLequiv A).toModuleIso.hom ≫ φ.hom := by
142
+ lemma cochainsMap_f_0_comp_zeroCochainsIso :
143
+ (cochainsMap f φ).f 0 ≫ (zeroCochainsIso B).hom = (zeroCochainsIso A).hom ≫ φ.hom := by
140
144
ext x
141
145
simp only [cochainsMap_f, Unique.eq_default (f ∘ _)]
142
146
rfl
143
147
148
+ @[deprecated (since := "2025-05-09")]
149
+ alias cochainsMap_f_0_comp_zeroCochainsLequiv := cochainsMap_f_0_comp_zeroCochainsIso
150
+
144
151
@[reassoc]
145
- lemma cochainsMap_f_1_comp_oneCochainsLequiv :
146
- (cochainsMap f φ).f 1 ≫ (oneCochainsLequiv B).toModuleIso.hom =
147
- (oneCochainsLequiv A).toModuleIso.hom ≫ ModuleCat.ofHom (fOne f φ) := by
152
+ lemma cochainsMap_f_1_comp_oneCochainsIso :
153
+ (cochainsMap f φ).f 1 ≫ (oneCochainsIso B).hom = (oneCochainsIso A).hom ≫ fOne f φ := by
148
154
ext x
149
155
simp only [cochainsMap_f, Unique.eq_default (f ∘ _)]
150
156
rfl
151
157
158
+ @[deprecated (since := "2025-05-09")]
159
+ alias cochainsMap_f_1_comp_oneCochainsLequiv := cochainsMap_f_1_comp_oneCochainsIso
160
+
152
161
@[reassoc]
153
- lemma cochainsMap_f_2_comp_twoCochainsLequiv :
154
- (cochainsMap f φ).f 2 ≫ (twoCochainsLequiv B).toModuleIso.hom =
155
- (twoCochainsLequiv A).toModuleIso.hom ≫ ModuleCat.ofHom (fTwo f φ) := by
162
+ lemma cochainsMap_f_2_comp_twoCochainsIso :
163
+ (cochainsMap f φ).f 2 ≫ (twoCochainsIso B).hom = (twoCochainsIso A).hom ≫ fTwo f φ := by
156
164
ext x g
157
165
show φ.hom (x _) = φ.hom (x _)
158
166
rcongr x
159
167
fin_cases x <;> rfl
160
168
169
+ @[deprecated (since := "2025-05-09")]
170
+ alias cochainsMap_f_2_comp_twoCochainsLequiv := cochainsMap_f_2_comp_twoCochainsIso
171
+
161
172
@[reassoc]
162
- lemma cochainsMap_f_3_comp_threeCochainsLequiv :
163
- (cochainsMap f φ).f 3 ≫ (threeCochainsLequiv B).toModuleIso.hom =
164
- (threeCochainsLequiv A).toModuleIso.hom ≫ ModuleCat.ofHom (fThree f φ) := by
173
+ lemma cochainsMap_f_3_comp_threeCochainsIso :
174
+ (cochainsMap f φ).f 3 ≫ (threeCochainsIso B).hom = (threeCochainsIso A).hom ≫ fThree f φ := by
165
175
ext x g
166
176
show φ.hom (x _) = φ.hom (x _)
167
177
rcongr x
168
178
fin_cases x <;> rfl
169
179
180
+ @[deprecated (since := "2025-05-09")]
181
+ alias cochainsMap_f_3_comp_threeCochainsLequiv := cochainsMap_f_3_comp_threeCochainsIso
182
+
170
183
open ShortComplex
171
184
172
185
/-- Given a group homomorphism `f : G →* H` and a representation morphism `φ : Res(f)(A) ⟶ B`,
@@ -208,7 +221,7 @@ instance mono_H0Map_of_mono {A B : Rep k G} (f : A ⟶ B) [Mono f] :
208
221
@[reassoc (attr := simp), elementwise (attr := simp)]
209
222
theorem cocyclesMap_comp_isoZeroCocycles_hom :
210
223
cocyclesMap f φ 0 ≫ (isoZeroCocycles B).hom = (isoZeroCocycles A).hom ≫ H0Map f φ := by
211
- have := cochainsMap_f_0_comp_zeroCochainsLequiv f φ
224
+ have := cochainsMap_f_0_comp_zeroCochainsIso f φ
212
225
simp_all [← cancel_mono (shortComplexH0 B).f]
213
226
214
227
@[reassoc (attr := simp), elementwise (attr := simp)]
@@ -223,8 +236,8 @@ to `B --dZero--> Fun(G, B) --dOne--> Fun(G × G, B)`. -/
223
236
noncomputable def mapShortComplexH1 :
224
237
shortComplexH1 A ⟶ shortComplexH1 B where
225
238
τ₁ := φ.hom
226
- τ₂ := ModuleCat.ofHom ( fOne f φ)
227
- τ₃ := ModuleCat.ofHom ( fTwo f φ)
239
+ τ₂ := fOne f φ
240
+ τ₃ := fTwo f φ
228
241
comm₁₂ := by
229
242
ext x
230
243
funext g
@@ -266,7 +279,7 @@ noncomputable abbrev mapOneCocycles :
266
279
@[reassoc, elementwise]
267
280
lemma mapOneCocycles_comp_i :
268
281
mapOneCocycles f φ ≫ (shortComplexH1 B).moduleCatLeftHomologyData.i =
269
- (shortComplexH1 A).moduleCatLeftHomologyData.i ≫ ModuleCat.ofHom ( fOne f φ) := by
282
+ (shortComplexH1 A).moduleCatLeftHomologyData.i ≫ fOne f φ := by
270
283
simp
271
284
272
285
@[deprecated (since := "2025-05-09")]
@@ -276,7 +289,7 @@ alias mapOneCocycles_comp_subtype := mapOneCocycles_comp_i
276
289
lemma cocyclesMap_comp_isoOneCocycles_hom :
277
290
cocyclesMap f φ 1 ≫ (isoOneCocycles B).hom = (isoOneCocycles A).hom ≫ mapOneCocycles f φ := by
278
291
simp [← cancel_mono (moduleCatLeftHomologyData (shortComplexH1 B)).i, mapShortComplexH1,
279
- cochainsMap_f_1_comp_oneCochainsLequiv f, ← LinearEquiv.toModuleIso_hom ]
292
+ cochainsMap_f_1_comp_oneCochainsIso f ]
280
293
281
294
/-- Given a group homomorphism `f : G →* H` and a representation morphism `φ : Res(f)(A) ⟶ B`,
282
295
this is induced map `H¹(H, A) ⟶ H¹(G, B)`. -/
@@ -318,9 +331,9 @@ this is the induced map from the short complex
318
331
@[simps]
319
332
noncomputable def mapShortComplexH2 :
320
333
shortComplexH2 A ⟶ shortComplexH2 B where
321
- τ₁ := ModuleCat.ofHom ( fOne f φ)
322
- τ₂ := ModuleCat.ofHom ( fTwo f φ)
323
- τ₃ := ModuleCat.ofHom ( fThree f φ)
334
+ τ₁ := fOne f φ
335
+ τ₂ := fTwo f φ
336
+ τ₃ := fThree f φ
324
337
comm₁₂ := by
325
338
ext x
326
339
funext g
@@ -361,7 +374,7 @@ noncomputable abbrev mapTwoCocycles :
361
374
@[reassoc, elementwise]
362
375
lemma mapTwoCocycles_comp_i :
363
376
mapTwoCocycles f φ ≫ (shortComplexH2 B).moduleCatLeftHomologyData.i =
364
- (shortComplexH2 A).moduleCatLeftHomologyData.i ≫ ModuleCat.ofHom ( fTwo f φ) := by
377
+ (shortComplexH2 A).moduleCatLeftHomologyData.i ≫ fTwo f φ := by
365
378
simp
366
379
367
380
@[deprecated (since := "2025-05-09")]
@@ -371,7 +384,7 @@ alias mapTwoCocycles_comp_subtype := mapTwoCocycles_comp_i
371
384
lemma cocyclesMap_comp_isoTwoCocycles_hom :
372
385
cocyclesMap f φ 2 ≫ (isoTwoCocycles B).hom = (isoTwoCocycles A).hom ≫ mapTwoCocycles f φ := by
373
386
simp [← cancel_mono (moduleCatLeftHomologyData (shortComplexH2 B)).i, mapShortComplexH2,
374
- cochainsMap_f_2_comp_twoCochainsLequiv f, ← LinearEquiv.toModuleIso_hom ]
387
+ cochainsMap_f_2_comp_twoCochainsIso f ]
375
388
376
389
/-- Given a group homomorphism `f : G →* H` and a representation morphism `φ : Res(f)(A) ⟶ B`,
377
390
this is induced map `H²(H, A) ⟶ H²(G, B)`. -/
0 commit comments