|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Chris Birkbeck. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Chris Birkbeck |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module number_theory.modular_forms.congruence_subgroups |
| 7 | +! leanprover-community/mathlib commit ae690b0c236e488a0043f6faa8ce3546e7f2f9c5 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Data.ZMod.Basic |
| 12 | +import Mathlib.GroupTheory.GroupAction.ConjAct |
| 13 | +import Mathlib.GroupTheory.Subgroup.Pointwise |
| 14 | +import Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup |
| 15 | + |
| 16 | +/-! |
| 17 | +# Congruence subgroups |
| 18 | +
|
| 19 | +This defines congruence subgroups of `SL(2, ℤ)` such as `Γ(N)`, `Γ₀(N)` and `Γ₁(N)` for `N` a |
| 20 | +natural number. |
| 21 | +
|
| 22 | +It also contains basic results about congruence subgroups. |
| 23 | +
|
| 24 | +-/ |
| 25 | + |
| 26 | + |
| 27 | +local notation "SL(" n ", " R ")" => Matrix.SpecialLinearGroup (Fin n) R |
| 28 | + |
| 29 | +attribute [-instance] Matrix.SpecialLinearGroup.instCoeFun |
| 30 | + |
| 31 | +local notation:1024 "↑ₘ" A:1024 => ((A : SL(2, ℤ)) : Matrix (Fin 2) (Fin 2) ℤ) |
| 32 | + |
| 33 | +open Matrix.SpecialLinearGroup Matrix |
| 34 | + |
| 35 | +variable (N : ℕ) |
| 36 | + |
| 37 | +local notation "SLMOD(" N ")" => |
| 38 | + @Matrix.SpecialLinearGroup.map (Fin 2) _ _ _ _ _ _ (Int.castRingHom (ZMod N)) |
| 39 | + |
| 40 | +set_option linter.uppercaseLean3 false |
| 41 | + |
| 42 | +@[simp] |
| 43 | +theorem SL_reduction_mod_hom_val (N : ℕ) (γ : SL(2, ℤ)) : |
| 44 | + ∀ i j : Fin 2, (SLMOD(N) γ : Matrix (Fin 2) (Fin 2) (ZMod N)) i j = ((↑ₘγ i j : ℤ) : ZMod N) := |
| 45 | + fun _ _ => rfl |
| 46 | +#align SL_reduction_mod_hom_val SL_reduction_mod_hom_val |
| 47 | + |
| 48 | +/-- The full level `N` congruence subgroup of `SL(2, ℤ)` of matrices that reduce to the identity |
| 49 | +modulo `N`.-/ |
| 50 | +def Gamma (N : ℕ) : Subgroup SL(2, ℤ) := |
| 51 | + SLMOD(N).ker |
| 52 | +#align Gamma Gamma |
| 53 | + |
| 54 | +theorem Gamma_mem' (N : ℕ) (γ : SL(2, ℤ)) : γ ∈ Gamma N ↔ SLMOD(N) γ = 1 := |
| 55 | + Iff.rfl |
| 56 | +#align Gamma_mem' Gamma_mem' |
| 57 | + |
| 58 | +@[simp] |
| 59 | +theorem Gamma_mem (N : ℕ) (γ : SL(2, ℤ)) : γ ∈ Gamma N ↔ ((↑ₘγ 0 0 : ℤ) : ZMod N) = 1 ∧ |
| 60 | + ((↑ₘγ 0 1 : ℤ) : ZMod N) = 0 ∧ ((↑ₘγ 1 0 : ℤ) : ZMod N) = 0 ∧ ((↑ₘγ 1 1 : ℤ) : ZMod N) = 1 := by |
| 61 | + rw [Gamma_mem'] |
| 62 | + constructor |
| 63 | + · intro h |
| 64 | + simp [← SL_reduction_mod_hom_val N γ, h] |
| 65 | + · intro h |
| 66 | + ext i; intro j |
| 67 | + rw [SL_reduction_mod_hom_val N γ] |
| 68 | + fin_cases i <;> fin_cases j <;> simp only [h] |
| 69 | + exacts [h.1, h.2.1, h.2.2.1, h.2.2.2] |
| 70 | +#align Gamma_mem Gamma_mem |
| 71 | + |
| 72 | +theorem Gamma_normal (N : ℕ) : Subgroup.Normal (Gamma N) := |
| 73 | + SLMOD(N).normal_ker |
| 74 | +#align Gamma_normal Gamma_normal |
| 75 | + |
| 76 | +theorem Gamma_one_top : Gamma 1 = ⊤ := by |
| 77 | + ext |
| 78 | + simp |
| 79 | +#align Gamma_one_top Gamma_one_top |
| 80 | + |
| 81 | +theorem Gamma_zero_bot : Gamma 0 = ⊥ := by |
| 82 | + ext |
| 83 | + simp only [Gamma_mem, coe_matrix_coe, Int.coe_castRingHom, map_apply, Int.cast_id, |
| 84 | + Subgroup.mem_bot] |
| 85 | + constructor |
| 86 | + · intro h |
| 87 | + ext i; intro j |
| 88 | + fin_cases i <;> fin_cases j <;> simp only [h] |
| 89 | + exacts [h.1, h.2.1, h.2.2.1, h.2.2.2] |
| 90 | + · intro h |
| 91 | + simp [h] |
| 92 | +#align Gamma_zero_bot Gamma_zero_bot |
| 93 | + |
| 94 | +/-- The congruence subgroup of `SL(2, ℤ)` of matrices whose lower left-hand entry reduces to zero |
| 95 | +modulo `N`. -/ |
| 96 | +def Gamma0 (N : ℕ) : Subgroup SL(2, ℤ) where |
| 97 | + carrier := { g : SL(2, ℤ) | ((↑ₘg 1 0 : ℤ) : ZMod N) = 0 } |
| 98 | + one_mem' := by simp |
| 99 | + mul_mem' := by |
| 100 | + intro a b ha hb |
| 101 | + simp only [Set.mem_setOf_eq] |
| 102 | + have h := (Matrix.two_mul_expl a.1 b.1).2.2.1 |
| 103 | + simp only [coe_matrix_coe, coe_mul, Int.coe_castRingHom, map_apply, Set.mem_setOf_eq, |
| 104 | + mul_eq_mul] at * |
| 105 | + rw [h] |
| 106 | + simp [ha, hb] |
| 107 | + inv_mem' := by |
| 108 | + intro a ha |
| 109 | + simp only [Set.mem_setOf_eq] |
| 110 | + rw [SL2_inv_expl a] |
| 111 | + simp only [cons_val_zero, cons_val_one, head_cons, coe_matrix_coe, |
| 112 | + coe_mk, Int.coe_castRingHom, map_apply, Int.cast_neg, neg_eq_zero, Set.mem_setOf_eq] at * |
| 113 | + exact ha |
| 114 | +#align Gamma0 Gamma0 |
| 115 | + |
| 116 | +@[simp] |
| 117 | +theorem Gamma0_mem (N : ℕ) (A : SL(2, ℤ)) : A ∈ Gamma0 N ↔ ((↑ₘA 1 0 : ℤ) : ZMod N) = 0 := |
| 118 | + Iff.rfl |
| 119 | +#align Gamma0_mem Gamma0_mem |
| 120 | + |
| 121 | +theorem Gamma0_det (N : ℕ) (A : Gamma0 N) : (A.1.1.det : ZMod N) = 1 := by simp [A.1.property] |
| 122 | +#align Gamma0_det Gamma0_det |
| 123 | + |
| 124 | +/-- The group homomorphism from `Gamma0` to `ZMod N` given by mapping a matrix to its lower |
| 125 | +right-hand entry. -/ |
| 126 | +def Gamma0Map (N : ℕ) : Gamma0 N →* ZMod N where |
| 127 | + toFun g := ((↑ₘg 1 1 : ℤ) : ZMod N) |
| 128 | + map_one' := by simp |
| 129 | + map_mul' := by |
| 130 | + intro A B |
| 131 | + have := (two_mul_expl A.1.1 B.1.1).2.2.2 |
| 132 | + simp only [Subgroup.coe_mul, coe_matrix_coe, coe_mul, Int.coe_castRingHom, map_apply, |
| 133 | + mul_eq_mul] at * |
| 134 | + rw [this] |
| 135 | + have ha := A.property |
| 136 | + simp only [Int.cast_add, Int.cast_mul, add_left_eq_self, Gamma0_mem, |
| 137 | + coe_matrix_coe, Int.coe_castRingHom, map_apply] at * |
| 138 | + rw [ha] |
| 139 | + simp |
| 140 | +#align Gamma_0_map Gamma0Map |
| 141 | + |
| 142 | +/-- The congruence subgroup `Gamma1` (as a subgroup of `Gamma0`) of matrices whose bottom |
| 143 | +row is congruent to `(0,1)` modulo `N`.-/ |
| 144 | +def Gamma1' (N : ℕ) : Subgroup (Gamma0 N) := |
| 145 | + (Gamma0Map N).ker |
| 146 | +#align Gamma1' Gamma1' |
| 147 | + |
| 148 | +@[simp, nolint simpNF] -- Porting note: linter failed to synth `CommMonoid { x // x ∈ Gamma0 N }` |
| 149 | +theorem Gamma1_mem' (N : ℕ) (γ : Gamma0 N) : γ ∈ Gamma1' N ↔ (Gamma0Map N) γ = 1 := |
| 150 | + Iff.rfl |
| 151 | +#align Gamma1_mem' Gamma1_mem' |
| 152 | + |
| 153 | +theorem Gamma1_to_Gamma0_mem (N : ℕ) (A : Gamma0 N) : A ∈ Gamma1' N ↔ |
| 154 | + ((↑ₘA 0 0 : ℤ) : ZMod N) = 1 ∧ ((↑ₘA 1 1 : ℤ) : ZMod N) = 1 ∧ ((↑ₘA 1 0 : ℤ) : ZMod N) = 0 := by |
| 155 | + constructor |
| 156 | + · intro ha |
| 157 | + have hA := A.property |
| 158 | + rw [Gamma0_mem] at hA |
| 159 | + have adet := Gamma0_det N A |
| 160 | + rw [Matrix.det_fin_two] at adet |
| 161 | + simp only [Gamma0Map, coe_matrix_coe, Int.coe_castRingHom, map_apply, Gamma1_mem', |
| 162 | + MonoidHom.coe_mk, OneHom.coe_mk, Int.cast_sub, Int.cast_mul] at * |
| 163 | + rw [hA, ha] at adet |
| 164 | + simp only [mul_one, MulZeroClass.mul_zero, sub_zero] at adet |
| 165 | + simp only [adet, hA, ha, eq_self_iff_true, and_self_iff] |
| 166 | + · intro ha |
| 167 | + simp only [Gamma1_mem', Gamma0Map, MonoidHom.coe_mk, coe_matrix_coe, |
| 168 | + Int.coe_castRingHom, map_apply] |
| 169 | + exact ha.2.1 |
| 170 | +#align Gamma1_to_Gamma0_mem Gamma1_to_Gamma0_mem |
| 171 | + |
| 172 | +/-- The congruence subgroup `Gamma1` of `SL(2, ℤ)` consisting of matrices whose bottom |
| 173 | +row is congruent to `(0,1)` modulo `N`. -/ |
| 174 | +def Gamma1 (N : ℕ) : Subgroup SL(2, ℤ) := |
| 175 | + Subgroup.map ((Gamma0 N).subtype.comp (Gamma1' N).subtype) ⊤ |
| 176 | +#align Gamma1 Gamma1 |
| 177 | + |
| 178 | +@[simp] |
| 179 | +theorem Gamma1_mem (N : ℕ) (A : SL(2, ℤ)) : A ∈ Gamma1 N ↔ |
| 180 | + ((↑ₘA 0 0 : ℤ) : ZMod N) = 1 ∧ ((↑ₘA 1 1 : ℤ) : ZMod N) = 1 ∧ ((↑ₘA 1 0 : ℤ) : ZMod N) = 0 := by |
| 181 | + constructor |
| 182 | + · intro ha |
| 183 | + simp_rw [Gamma1, Subgroup.mem_map] at ha |
| 184 | + obtain ⟨⟨x, hx⟩, hxx⟩ := ha |
| 185 | + rw [Gamma1_to_Gamma0_mem] at hx |
| 186 | + simp only [Subgroup.mem_top, true_and] at hxx |
| 187 | + rw [← hxx] |
| 188 | + convert hx |
| 189 | + · intro ha |
| 190 | + simp_rw [Gamma1, Subgroup.mem_map] |
| 191 | + have hA : A ∈ Gamma0 N := by simp [ha.right.right, Gamma0_mem] |
| 192 | + have HA : (⟨A, hA⟩ : Gamma0 N) ∈ Gamma1' N := by |
| 193 | + simp only [Gamma1_to_Gamma0_mem, Subgroup.coe_mk, coe_matrix_coe, |
| 194 | + Int.coe_castRingHom, map_apply] |
| 195 | + exact ha |
| 196 | + refine' ⟨(⟨(⟨A, hA⟩ : Gamma0 N), HA⟩ : (Gamma1' N : Subgroup (Gamma0 N))), _⟩ |
| 197 | + simp |
| 198 | +#align Gamma1_mem Gamma1_mem |
| 199 | + |
| 200 | +theorem Gamma1_in_Gamma0 (N : ℕ) : Gamma1 N ≤ Gamma0 N := by |
| 201 | + intro x HA |
| 202 | + simp only [Gamma0_mem, Gamma1_mem, coe_matrix_coe, Int.coe_castRingHom, map_apply] at * |
| 203 | + exact HA.2.2 |
| 204 | +#align Gamma1_in_Gamma0 Gamma1_in_Gamma0 |
| 205 | + |
| 206 | +section CongruenceSubgroup |
| 207 | + |
| 208 | +/-- A congruence subgroup is a subgroup of `SL(2, ℤ)` which contains some `Gamma N` for some |
| 209 | +`(N : ℕ+)`. -/ |
| 210 | +def IsCongruenceSubgroup (Γ : Subgroup SL(2, ℤ)) : Prop := |
| 211 | + ∃ N : ℕ+, Gamma N ≤ Γ |
| 212 | +#align is_congruence_subgroup IsCongruenceSubgroup |
| 213 | + |
| 214 | +theorem isCongruenceSubgroup_trans (H K : Subgroup SL(2, ℤ)) (h : H ≤ K) |
| 215 | + (h2 : IsCongruenceSubgroup H) : IsCongruenceSubgroup K := by |
| 216 | + obtain ⟨N, hN⟩ := h2 |
| 217 | + refine' ⟨N, le_trans hN h⟩ |
| 218 | +#align is_congruence_subgroup_trans isCongruenceSubgroup_trans |
| 219 | + |
| 220 | +theorem Gamma_is_cong_sub (N : ℕ+) : IsCongruenceSubgroup (Gamma N) := |
| 221 | + ⟨N, by simp only [le_refl]⟩ |
| 222 | +#align Gamma_is_cong_sub Gamma_is_cong_sub |
| 223 | + |
| 224 | +theorem Gamma1_is_congruence (N : ℕ+) : IsCongruenceSubgroup (Gamma1 N) := by |
| 225 | + refine' ⟨N, _⟩ |
| 226 | + intro A hA |
| 227 | + simp only [Gamma1_mem, Gamma_mem] at * |
| 228 | + simp only [hA, eq_self_iff_true, and_self_iff] |
| 229 | +#align Gamma1_is_congruence Gamma1_is_congruence |
| 230 | + |
| 231 | +theorem Gamma0_is_congruence (N : ℕ+) : IsCongruenceSubgroup (Gamma0 N) := |
| 232 | + isCongruenceSubgroup_trans _ _ (Gamma1_in_Gamma0 N) (Gamma1_is_congruence N) |
| 233 | +#align Gamma0_is_congruence Gamma0_is_congruence |
| 234 | + |
| 235 | +end CongruenceSubgroup |
| 236 | + |
| 237 | +section Conjugation |
| 238 | + |
| 239 | +open Pointwise |
| 240 | + |
| 241 | +theorem Gamma_cong_eq_self (N : ℕ) (g : ConjAct SL(2, ℤ)) : g • Gamma N = Gamma N := by |
| 242 | + apply Subgroup.Normal.conjAct (Gamma_normal N) |
| 243 | +#align Gamma_cong_eq_self Gamma_cong_eq_self |
| 244 | + |
| 245 | +theorem conj_cong_is_cong (g : ConjAct SL(2, ℤ)) (Γ : Subgroup SL(2, ℤ)) |
| 246 | + (h : IsCongruenceSubgroup Γ) : IsCongruenceSubgroup (g • Γ) := by |
| 247 | + obtain ⟨N, HN⟩ := h |
| 248 | + refine' ⟨N, _⟩ |
| 249 | + rw [← Gamma_cong_eq_self N g, Subgroup.pointwise_smul_le_pointwise_smul_iff] |
| 250 | + exact HN |
| 251 | +#align conj_cong_is_cong conj_cong_is_cong |
| 252 | + |
| 253 | +end Conjugation |
0 commit comments