@@ -3,9 +3,8 @@ Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
3
3
Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Sébastien Gouëzel, Floris van Doorn, Yury Kudryashov
5
5
-/
6
- import Mathlib.MeasureTheory.Constructions.BorelSpace.Order
6
+ import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
7
7
import Mathlib.MeasureTheory.Group.MeasurableEquiv
8
- import Mathlib.Topology.MetricSpace.HausdorffDistance
9
8
10
9
/-!
11
10
# Regular measures
@@ -247,6 +246,19 @@ theorem map' {α β} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α}
247
246
refine ⟨f '' K, image_subset_iff.2 hKU, hAB' _ hKc, ?_⟩
248
247
rwa [f.map_apply, f.preimage_image]
249
248
249
+ protected theorem comap {α β} [MeasurableSpace α] {mβ : MeasurableSpace β}
250
+ {μ : Measure β} {pa qa : Set α → Prop } {pb qb : Set β → Prop }
251
+ (H : InnerRegularWRT μ pb qb) {f : α → β} (hf : MeasurableEmbedding f)
252
+ (hAB : ∀ U, qa U → qb (f '' U)) (hAB' : ∀ K ⊆ range f, pb K → pa (f ⁻¹' K)) :
253
+ (μ.comap f).InnerRegularWRT pa qa := by
254
+ intro U hU r hr
255
+ rw [hf.comap_apply] at hr
256
+ obtain ⟨K, hKU, hK, hμU⟩ := H (hAB U hU) r hr
257
+ have hKrange := hKU.trans (image_subset_range _ _)
258
+ refine ⟨f ⁻¹' K, ?_, hAB' K hKrange hK, ?_⟩
259
+ · rw [← hf.injective.preimage_image U]; exact preimage_mono hKU
260
+ · rwa [hf.comap_apply, image_preimage_eq_iff.mpr hKrange]
261
+
250
262
theorem smul (H : InnerRegularWRT μ p q) (c : ℝ≥0 ∞) : InnerRegularWRT (c • μ) p q := by
251
263
intro U hU r hr
252
264
rw [smul_apply, H.measure_eq_iSup hU, smul_eq_mul] at hr
@@ -374,6 +386,20 @@ protected theorem map [OpensMeasurableSpace α] [MeasurableSpace β] [Topologica
374
386
refine ⟨f.symm ⁻¹' U, image_subset_iff.1 hAU, this, ?_⟩
375
387
rwa [map_apply f.measurable this.measurableSet, f.preimage_symm, f.preimage_image]
376
388
389
+ theorem comap' {mβ : MeasurableSpace β} [TopologicalSpace β] (μ : Measure β) [OuterRegular μ]
390
+ {f : α → β} (f_cont : Continuous f) (f_me : MeasurableEmbedding f) :
391
+ (μ.comap f).OuterRegular where
392
+ outerRegular A hA r hr := by
393
+ rw [f_me.comap_apply] at hr
394
+ obtain ⟨U, hUA, Uopen, hμU⟩ := OuterRegular.outerRegular (f_me.measurableSet_image' hA) r hr
395
+ refine ⟨f ⁻¹' U, by rwa [Superset, ← image_subset_iff], Uopen.preimage f_cont, ?_⟩
396
+ rw [f_me.comap_apply]
397
+ exact (measure_mono (image_preimage_subset _ _)).trans_lt hμU
398
+
399
+ protected theorem comap [BorelSpace α] {mβ : MeasurableSpace β} [TopologicalSpace β] [BorelSpace β]
400
+ (μ : Measure β) [OuterRegular μ] (f : α ≃ₜ β) : (μ.comap f).OuterRegular :=
401
+ OuterRegular.comap' μ f.continuous f.measurableEmbedding
402
+
377
403
protected theorem smul (μ : Measure α) [OuterRegular μ] {x : ℝ≥0 ∞} (hx : x ≠ ∞) :
378
404
(x • μ).OuterRegular := by
379
405
rcases eq_or_ne x 0 with (rfl | h0)
@@ -695,6 +721,21 @@ protected theorem map_iff [BorelSpace α] [MeasurableSpace β] [TopologicalSpace
695
721
rw [map_map f.symm.continuous.measurable f.continuous.measurable]
696
722
simp
697
723
724
+ open Topology in
725
+ protected theorem comap' [BorelSpace α]
726
+ {mβ : MeasurableSpace β} [TopologicalSpace β] [BorelSpace β]
727
+ (μ : Measure β) [H : InnerRegular μ] {f : α → β} (hf : IsOpenEmbedding f) :
728
+ (μ.comap f).InnerRegular where
729
+ innerRegular :=
730
+ H.innerRegular.comap hf.measurableEmbedding
731
+ (fun _ hU ↦ hf.measurableEmbedding.measurableSet_image' hU)
732
+ (fun _ hKrange hK ↦ hf.isInducing.isCompact_preimage' hK hKrange)
733
+
734
+ protected theorem comap [BorelSpace α] {mβ : MeasurableSpace β} [TopologicalSpace β] [BorelSpace β]
735
+ {μ : Measure β} [InnerRegular μ] (f : α ≃ₜ β) :
736
+ (μ.comap f).InnerRegular :=
737
+ InnerRegular.comap' μ f.isOpenEmbedding
738
+
698
739
end InnerRegular
699
740
700
741
namespace InnerRegularCompactLTTop
@@ -1017,6 +1058,20 @@ protected theorem map_iff [BorelSpace α] [MeasurableSpace β] [TopologicalSpace
1017
1058
rw [map_map f.symm.continuous.measurable f.continuous.measurable]
1018
1059
simp
1019
1060
1061
+ open Topology in
1062
+ protected theorem comap' [BorelSpace α]
1063
+ {mβ : MeasurableSpace β} [TopologicalSpace β] [BorelSpace β] (μ : Measure β) [Regular μ]
1064
+ {f : α → β} (hf : IsOpenEmbedding f) : (μ.comap f).Regular := by
1065
+ haveI := OuterRegular.comap' μ hf.continuous hf.measurableEmbedding
1066
+ haveI := IsFiniteMeasureOnCompacts.comap' μ hf.continuous hf.measurableEmbedding
1067
+ exact ⟨InnerRegularWRT.comap Regular.innerRegular hf.measurableEmbedding
1068
+ (fun _ hU ↦ hf.isOpen_iff_image_isOpen.mp hU)
1069
+ (fun _ hKrange hK ↦ hf.isInducing.isCompact_preimage' hK hKrange)⟩
1070
+
1071
+ protected theorem comap [BorelSpace α] {mβ : MeasurableSpace β} [TopologicalSpace β]
1072
+ [BorelSpace β] (μ : Measure β) [Regular μ] (f : α ≃ₜ β) : (μ.comap f).Regular :=
1073
+ Regular.comap' μ f.isOpenEmbedding
1074
+
1020
1075
protected theorem smul [Regular μ] {x : ℝ≥0 ∞} (hx : x ≠ ∞) : (x • μ).Regular := by
1021
1076
haveI := OuterRegular.smul μ hx
1022
1077
haveI := IsFiniteMeasureOnCompacts.smul μ hx
0 commit comments