|
| 1 | +/- |
| 2 | +Copyright (c) 2024 Joël Riou. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Joël Riou |
| 5 | +-/ |
| 6 | +import Mathlib.CategoryTheory.Functor.KanExtension.Pointwise |
| 7 | + |
| 8 | +/-! # The Kan extension functor |
| 9 | +
|
| 10 | +Given a functor `L : C ⥤ D`, we define the left Kan extension functor |
| 11 | +`L.lan : (C ⥤ H) ⥤ (D ⥤ H)` which sends a functor `F : C ⥤ H` to its |
| 12 | +left Kan extension along `L`. This is defined if all `F` have such |
| 13 | +a left Kan extension. It is shown that `L.lan` is the left adjoint to |
| 14 | +the functor `(D ⥤ H) ⥤ (C ⥤ H)` given by the precomposition |
| 15 | +with `L` (see `Functor.lanAdjunction`). |
| 16 | +
|
| 17 | +## TODO |
| 18 | +- dualize the results for right Kan extensions |
| 19 | +- refactor the file `CategoryTheory.Limits.KanExtension` so that |
| 20 | +the definitions of `Lan` and `Ran` in that file (which rely on the |
| 21 | +existence of (co)limits) are replaced by the new definition |
| 22 | +`Functor.lan` which is based on Kan extensions API. |
| 23 | +
|
| 24 | +-/ |
| 25 | + |
| 26 | +namespace CategoryTheory |
| 27 | + |
| 28 | +open Category |
| 29 | + |
| 30 | +namespace Functor |
| 31 | + |
| 32 | +variable {C D : Type*} [Category C] [Category D] (L : C ⥤ D) |
| 33 | + {H : Type*} [Category H] [∀ (F : C ⥤ H), HasLeftKanExtension L F] |
| 34 | + |
| 35 | +/-- The left Kan extension functor `(C ⥤ H) ⥤ (D ⥤ H)` along a functor `C ⥤ D`. -/ |
| 36 | +@[pp_dot] |
| 37 | +noncomputable def lan : (C ⥤ H) ⥤ (D ⥤ H) where |
| 38 | + obj F := leftKanExtension L F |
| 39 | + map {F₁ F₂} φ := descOfIsLeftKanExtension _ (leftKanExtensionUnit L F₁) _ |
| 40 | + (φ ≫ leftKanExtensionUnit L F₂) |
| 41 | + |
| 42 | +/-- The natural transformation `F ⟶ L ⋙ (L.lan).obj G`. -/ |
| 43 | +@[pp_dot] |
| 44 | +noncomputable def lanUnit : (𝟭 (C ⥤ H)) ⟶ L.lan ⋙ (whiskeringLeft C D H).obj L where |
| 45 | + app F := leftKanExtensionUnit L F |
| 46 | + naturality {F₁ F₂} φ := by ext; simp [lan] |
| 47 | + |
| 48 | +instance (F : C ⥤ H) : (L.lan.obj F).IsLeftKanExtension (L.lanUnit.app F) := by |
| 49 | + dsimp [lan, lanUnit] |
| 50 | + infer_instance |
| 51 | + |
| 52 | +/-- If there exists a pointwise left Kan extension of `F` along `L`, |
| 53 | +then `L.lan.obj G` is a pointwise left Kan extension of `F`. -/ |
| 54 | +noncomputable def isPointwiseLeftKanExtensionLanUnit |
| 55 | + (F : C ⥤ H) [HasPointwiseLeftKanExtension L F] : |
| 56 | + (LeftExtension.mk _ (L.lanUnit.app F)).IsPointwiseLeftKanExtension := |
| 57 | + isPointwiseLeftKanExtensionOfIsLeftKanExtension (F := F) _ (L.lanUnit.app F) |
| 58 | + |
| 59 | +variable (H) in |
| 60 | +/-- The left Kan extension functor `L.Lan` is left adjoint to the |
| 61 | +precomposition by `L`. -/ |
| 62 | +@[pp_dot] |
| 63 | +noncomputable def lanAdjunction : L.lan ⊣ (whiskeringLeft C D H).obj L := |
| 64 | + Adjunction.mkOfHomEquiv |
| 65 | + { homEquiv := fun F G => homEquivOfIsLeftKanExtension _ (L.lanUnit.app F) G |
| 66 | + homEquiv_naturality_left_symm := fun {F₁ F₂ G} f α => |
| 67 | + hom_ext_of_isLeftKanExtension _ (L.lanUnit.app F₁) _ _ (by |
| 68 | + ext X |
| 69 | + dsimp [homEquivOfIsLeftKanExtension] |
| 70 | + rw [descOfIsLeftKanExtension_fac_app, NatTrans.comp_app, ← assoc] |
| 71 | + have h := congr_app (L.lanUnit.naturality f) X |
| 72 | + dsimp at h ⊢ |
| 73 | + rw [← h, assoc, descOfIsLeftKanExtension_fac_app] ) |
| 74 | + homEquiv_naturality_right := fun {F G₁ G₂} β f => by |
| 75 | + dsimp [homEquivOfIsLeftKanExtension] |
| 76 | + rw [assoc] } |
| 77 | + |
| 78 | +variable (H) in |
| 79 | +@[simp] |
| 80 | +lemma lanAdjunction_unit : (L.lanAdjunction H).unit = L.lanUnit := by |
| 81 | + ext F : 2 |
| 82 | + dsimp [lanAdjunction, homEquivOfIsLeftKanExtension] |
| 83 | + simp |
| 84 | + |
| 85 | +lemma lanAdjunction_counit_app (G : D ⥤ H) : |
| 86 | + (L.lanAdjunction H).counit.app G = |
| 87 | + descOfIsLeftKanExtension (L.lan.obj (L ⋙ G)) (L.lanUnit.app (L ⋙ G)) G (𝟙 (L ⋙ G)) := |
| 88 | + rfl |
| 89 | + |
| 90 | +@[reassoc (attr := simp)] |
| 91 | +lemma lanUnit_app_whiskerLeft_lanAdjunction_counit_app (G : D ⥤ H) : |
| 92 | + L.lanUnit.app (L ⋙ G) ≫ whiskerLeft L ((L.lanAdjunction H).counit.app G) = 𝟙 (L ⋙ G) := by |
| 93 | + simp [lanAdjunction_counit_app] |
| 94 | + |
| 95 | +@[reassoc (attr := simp)] |
| 96 | +lemma lanUnit_app_app_lanAdjunction_counit_app_app (G : D ⥤ H) (X : C) : |
| 97 | + (L.lanUnit.app (L ⋙ G)).app X ≫ ((L.lanAdjunction H).counit.app G).app (L.obj X) = 𝟙 _ := |
| 98 | + congr_app (L.lanUnit_app_whiskerLeft_lanAdjunction_counit_app G) X |
| 99 | + |
| 100 | +lemma isIso_lanAdjunction_counit_app_iff (G : D ⥤ H) : |
| 101 | + IsIso ((L.lanAdjunction H).counit.app G) ↔ G.IsLeftKanExtension (𝟙 (L ⋙ G)) := |
| 102 | + (isLeftKanExtension_iff_isIso _ (L.lanUnit.app (L ⋙ G)) _ (by simp)).symm |
| 103 | + |
| 104 | +section |
| 105 | + |
| 106 | +variable [Full L] [Faithful L] |
| 107 | + |
| 108 | +instance (F : C ⥤ H) (X : C) [HasPointwiseLeftKanExtension L F] : |
| 109 | + IsIso ((L.lanUnit.app F).app X) := |
| 110 | + (isPointwiseLeftKanExtensionLanUnit L F (L.obj X)).isIso_hom_app |
| 111 | + |
| 112 | +instance (F : C ⥤ H) [HasPointwiseLeftKanExtension L F] : |
| 113 | + IsIso (L.lanUnit.app F) := |
| 114 | + NatIso.isIso_of_isIso_app _ |
| 115 | + |
| 116 | +instance coreflective [∀ (F : C ⥤ H), HasPointwiseLeftKanExtension L F] : |
| 117 | + IsIso (L.lanUnit (H := H)) := by |
| 118 | + apply NatIso.isIso_of_isIso_app _ |
| 119 | + |
| 120 | +instance (F : C ⥤ H) [HasPointwiseLeftKanExtension L F] : |
| 121 | + IsIso ((L.lanAdjunction H).unit.app F) := by |
| 122 | + rw [lanAdjunction_unit] |
| 123 | + infer_instance |
| 124 | + |
| 125 | +instance coreflective' [∀ (F : C ⥤ H), HasPointwiseLeftKanExtension L F] : |
| 126 | + IsIso (L.lanAdjunction H).unit := by |
| 127 | + apply NatIso.isIso_of_isIso_app _ |
| 128 | + |
| 129 | +end |
| 130 | + |
| 131 | +end Functor |
| 132 | + |
| 133 | +end CategoryTheory |
0 commit comments