@@ -61,7 +61,7 @@ along one of the variables (using either the Lebesgue or Bochner integral) is me
61
61
-/
62
62
63
63
64
- theorem measurableSet_integrable [SigmaFinite ν] ⦃f : α → β → E⦄
64
+ theorem measurableSet_integrable [SFinite ν] ⦃f : α → β → E⦄
65
65
(hf : StronglyMeasurable (uncurry f)) : MeasurableSet {x | Integrable (f x) ν} := by
66
66
simp_rw [Integrable, hf.of_uncurry_left.aestronglyMeasurable, true_and_iff]
67
67
exact measurableSet_lt (Measurable.lintegral_prod_right hf.ennnorm) measurable_const
@@ -74,7 +74,7 @@ variable [NormedSpace ℝ E]
74
74
/-- The Bochner integral is measurable. This shows that the integrand of (the right-hand-side of)
75
75
Fubini's theorem is measurable.
76
76
This version has `f` in curried form. -/
77
- theorem MeasureTheory.StronglyMeasurable.integral_prod_right [SigmaFinite ν] ⦃f : α → β → E⦄
77
+ theorem MeasureTheory.StronglyMeasurable.integral_prod_right [SFinite ν] ⦃f : α → β → E⦄
78
78
(hf : StronglyMeasurable (uncurry f)) : StronglyMeasurable fun x => ∫ y, f x y ∂ν := by
79
79
by_cases hE : CompleteSpace E; swap; · simp [integral, hE, stronglyMeasurable_const]
80
80
borelize E
@@ -124,22 +124,22 @@ theorem MeasureTheory.StronglyMeasurable.integral_prod_right [SigmaFinite ν]
124
124
125
125
/-- The Bochner integral is measurable. This shows that the integrand of (the right-hand-side of)
126
126
Fubini's theorem is measurable. -/
127
- theorem MeasureTheory.StronglyMeasurable.integral_prod_right' [SigmaFinite ν] ⦃f : α × β → E⦄
127
+ theorem MeasureTheory.StronglyMeasurable.integral_prod_right' [SFinite ν] ⦃f : α × β → E⦄
128
128
(hf : StronglyMeasurable f) : StronglyMeasurable fun x => ∫ y, f (x, y) ∂ν := by
129
129
rw [← uncurry_curry f] at hf; exact hf.integral_prod_right
130
130
#align measure_theory.strongly_measurable.integral_prod_right' MeasureTheory.StronglyMeasurable.integral_prod_right'
131
131
132
132
/-- The Bochner integral is measurable. This shows that the integrand of (the right-hand-side of)
133
133
the symmetric version of Fubini's theorem is measurable.
134
134
This version has `f` in curried form. -/
135
- theorem MeasureTheory.StronglyMeasurable.integral_prod_left [SigmaFinite μ] ⦃f : α → β → E⦄
135
+ theorem MeasureTheory.StronglyMeasurable.integral_prod_left [SFinite μ] ⦃f : α → β → E⦄
136
136
(hf : StronglyMeasurable (uncurry f)) : StronglyMeasurable fun y => ∫ x, f x y ∂μ :=
137
137
(hf.comp_measurable measurable_swap).integral_prod_right'
138
138
#align measure_theory.strongly_measurable.integral_prod_left MeasureTheory.StronglyMeasurable.integral_prod_left
139
139
140
140
/-- The Bochner integral is measurable. This shows that the integrand of (the right-hand-side of)
141
141
the symmetric version of Fubini's theorem is measurable. -/
142
- theorem MeasureTheory.StronglyMeasurable.integral_prod_left' [SigmaFinite μ] ⦃f : α × β → E⦄
142
+ theorem MeasureTheory.StronglyMeasurable.integral_prod_left' [SFinite μ] ⦃f : α × β → E⦄
143
143
(hf : StronglyMeasurable f) : StronglyMeasurable fun y => ∫ x, f (x, y) ∂μ :=
144
144
(hf.comp_measurable measurable_swap).integral_prod_right'
145
145
#align measure_theory.strongly_measurable.integral_prod_left' MeasureTheory.StronglyMeasurable.integral_prod_left'
@@ -153,7 +153,7 @@ namespace MeasureTheory
153
153
154
154
namespace Measure
155
155
156
- variable [SigmaFinite ν]
156
+ variable [SFinite ν]
157
157
158
158
theorem integrable_measure_prod_mk_left {s : Set (α × β)} (hs : MeasurableSet s)
159
159
(h2s : (μ.prod ν) s ≠ ∞) : Integrable (fun x => (ν (Prod.mk x ⁻¹' s)).toReal) μ := by
@@ -178,32 +178,32 @@ open MeasureTheory.Measure
178
178
section
179
179
180
180
nonrec theorem MeasureTheory.AEStronglyMeasurable.prod_swap {γ : Type *} [TopologicalSpace γ]
181
- [SigmaFinite μ] [SigmaFinite ν] {f : β × α → γ} (hf : AEStronglyMeasurable f (ν.prod μ)) :
181
+ [SFinite μ] [SFinite ν] {f : β × α → γ} (hf : AEStronglyMeasurable f (ν.prod μ)) :
182
182
AEStronglyMeasurable (fun z : α × β => f z.swap) (μ.prod ν) := by
183
183
rw [← prod_swap] at hf
184
184
exact hf.comp_measurable measurable_swap
185
185
#align measure_theory.ae_strongly_measurable.prod_swap MeasureTheory.AEStronglyMeasurable.prod_swap
186
186
187
- theorem MeasureTheory.AEStronglyMeasurable.fst {γ} [TopologicalSpace γ] [SigmaFinite ν] {f : α → γ}
187
+ theorem MeasureTheory.AEStronglyMeasurable.fst {γ} [TopologicalSpace γ] [SFinite ν] {f : α → γ}
188
188
(hf : AEStronglyMeasurable f μ) : AEStronglyMeasurable (fun z : α × β => f z.1 ) (μ.prod ν) :=
189
189
hf.comp_quasiMeasurePreserving quasiMeasurePreserving_fst
190
190
#align measure_theory.ae_strongly_measurable.fst MeasureTheory.AEStronglyMeasurable.fst
191
191
192
- theorem MeasureTheory.AEStronglyMeasurable.snd {γ} [TopologicalSpace γ] [SigmaFinite ν] {f : β → γ}
192
+ theorem MeasureTheory.AEStronglyMeasurable.snd {γ} [TopologicalSpace γ] [SFinite ν] {f : β → γ}
193
193
(hf : AEStronglyMeasurable f ν) : AEStronglyMeasurable (fun z : α × β => f z.2 ) (μ.prod ν) :=
194
194
hf.comp_quasiMeasurePreserving quasiMeasurePreserving_snd
195
195
#align measure_theory.ae_strongly_measurable.snd MeasureTheory.AEStronglyMeasurable.snd
196
196
197
197
/-- The Bochner integral is a.e.-measurable.
198
198
This shows that the integrand of (the right-hand-side of) Fubini's theorem is a.e.-measurable. -/
199
- theorem MeasureTheory.AEStronglyMeasurable.integral_prod_right' [SigmaFinite ν] [NormedSpace ℝ E]
199
+ theorem MeasureTheory.AEStronglyMeasurable.integral_prod_right' [SFinite ν] [NormedSpace ℝ E]
200
200
⦃f : α × β → E⦄ (hf : AEStronglyMeasurable f (μ.prod ν)) :
201
201
AEStronglyMeasurable (fun x => ∫ y, f (x, y) ∂ν) μ :=
202
202
⟨fun x => ∫ y, hf.mk f (x, y) ∂ν, hf.stronglyMeasurable_mk.integral_prod_right', by
203
203
filter_upwards [ae_ae_of_ae_prod hf.ae_eq_mk] with _ hx using integral_congr_ae hx⟩
204
204
#align measure_theory.ae_strongly_measurable.integral_prod_right' MeasureTheory.AEStronglyMeasurable.integral_prod_right'
205
205
206
- theorem MeasureTheory.AEStronglyMeasurable.prod_mk_left {γ : Type *} [SigmaFinite ν]
206
+ theorem MeasureTheory.AEStronglyMeasurable.prod_mk_left {γ : Type *} [SFinite ν]
207
207
[TopologicalSpace γ] {f : α × β → γ} (hf : AEStronglyMeasurable f (μ.prod ν)) :
208
208
∀ᵐ x ∂μ, AEStronglyMeasurable (fun y => f (x, y)) ν := by
209
209
filter_upwards [ae_ae_of_ae_prod hf.ae_eq_mk] with x hx
@@ -215,18 +215,18 @@ end
215
215
216
216
namespace MeasureTheory
217
217
218
- variable [SigmaFinite ν]
218
+ variable [SFinite ν]
219
219
220
220
/-! ### Integrability on a product -/
221
221
222
222
section
223
223
224
- theorem integrable_swap_iff [SigmaFinite μ] {f : α × β → E} :
224
+ theorem integrable_swap_iff [SFinite μ] {f : α × β → E} :
225
225
Integrable (f ∘ Prod.swap) (ν.prod μ) ↔ Integrable f (μ.prod ν) :=
226
226
measurePreserving_swap.integrable_comp_emb MeasurableEquiv.prodComm.measurableEmbedding
227
227
#align measure_theory.integrable_swap_iff MeasureTheory.integrable_swap_iff
228
228
229
- theorem Integrable.swap [SigmaFinite μ] ⦃f : α × β → E⦄ (hf : Integrable f (μ.prod ν)) :
229
+ theorem Integrable.swap [SFinite μ] ⦃f : α × β → E⦄ (hf : Integrable f (μ.prod ν)) :
230
230
Integrable (f ∘ Prod.swap) (ν.prod μ) :=
231
231
integrable_swap_iff.2 hf
232
232
#align measure_theory.integrable.swap MeasureTheory.Integrable.swap
@@ -277,20 +277,20 @@ theorem integrable_prod_iff ⦃f : α × β → E⦄ (h1f : AEStronglyMeasurable
277
277
278
278
/-- A binary function is integrable if the function `x ↦ f (x, y)` is integrable for almost every
279
279
`y` and the function `y ↦ ∫ ‖f (x, y)‖ dx` is integrable. -/
280
- theorem integrable_prod_iff' [SigmaFinite μ] ⦃f : α × β → E⦄
280
+ theorem integrable_prod_iff' [SFinite μ] ⦃f : α × β → E⦄
281
281
(h1f : AEStronglyMeasurable f (μ.prod ν)) :
282
282
Integrable f (μ.prod ν) ↔
283
283
(∀ᵐ y ∂ν, Integrable (fun x => f (x, y)) μ) ∧ Integrable (fun y => ∫ x, ‖f (x, y)‖ ∂μ) ν := by
284
284
convert integrable_prod_iff h1f.prod_swap using 1
285
285
rw [funext fun _ => Function.comp_apply.symm, integrable_swap_iff]
286
286
#align measure_theory.integrable_prod_iff' MeasureTheory.integrable_prod_iff'
287
287
288
- theorem Integrable.prod_left_ae [SigmaFinite μ] ⦃f : α × β → E⦄ (hf : Integrable f (μ.prod ν)) :
288
+ theorem Integrable.prod_left_ae [SFinite μ] ⦃f : α × β → E⦄ (hf : Integrable f (μ.prod ν)) :
289
289
∀ᵐ y ∂ν, Integrable (fun x => f (x, y)) μ :=
290
290
((integrable_prod_iff' hf.aestronglyMeasurable).mp hf).1
291
291
#align measure_theory.integrable.prod_left_ae MeasureTheory.Integrable.prod_left_ae
292
292
293
- theorem Integrable.prod_right_ae [SigmaFinite μ] ⦃f : α × β → E⦄ (hf : Integrable f (μ.prod ν)) :
293
+ theorem Integrable.prod_right_ae [SFinite μ] ⦃f : α × β → E⦄ (hf : Integrable f (μ.prod ν)) :
294
294
∀ᵐ x ∂μ, Integrable (fun y => f (x, y)) ν :=
295
295
hf.swap.prod_left_ae
296
296
#align measure_theory.integrable.prod_right_ae MeasureTheory.Integrable.prod_right_ae
@@ -300,7 +300,7 @@ theorem Integrable.integral_norm_prod_left ⦃f : α × β → E⦄ (hf : Integr
300
300
((integrable_prod_iff hf.aestronglyMeasurable).mp hf).2
301
301
#align measure_theory.integrable.integral_norm_prod_left MeasureTheory.Integrable.integral_norm_prod_left
302
302
303
- theorem Integrable.integral_norm_prod_right [SigmaFinite μ] ⦃f : α × β → E⦄
303
+ theorem Integrable.integral_norm_prod_right [SFinite μ] ⦃f : α × β → E⦄
304
304
(hf : Integrable f (μ.prod ν)) : Integrable (fun y => ∫ x, ‖f (x, y)‖ ∂μ) ν :=
305
305
hf.swap.integral_norm_prod_left
306
306
#align measure_theory.integrable.integral_norm_prod_right MeasureTheory.Integrable.integral_norm_prod_right
@@ -332,14 +332,14 @@ theorem Integrable.integral_prod_left ⦃f : α × β → E⦄ (hf : Integrable
332
332
eventually_of_forall fun y => (norm_nonneg (f (x, y)) : _)).symm
333
333
#align measure_theory.integrable.integral_prod_left MeasureTheory.Integrable.integral_prod_left
334
334
335
- theorem Integrable.integral_prod_right [SigmaFinite μ] ⦃f : α × β → E⦄
335
+ theorem Integrable.integral_prod_right [SFinite μ] ⦃f : α × β → E⦄
336
336
(hf : Integrable f (μ.prod ν)) : Integrable (fun y => ∫ x, f (x, y) ∂μ) ν :=
337
337
hf.swap.integral_prod_left
338
338
#align measure_theory.integrable.integral_prod_right MeasureTheory.Integrable.integral_prod_right
339
339
340
340
/-! ### The Bochner integral on a product -/
341
341
342
- variable [SigmaFinite μ]
342
+ variable [SFinite μ]
343
343
344
344
theorem integral_prod_swap (f : α × β → E) :
345
345
∫ z, f z.swap ∂ν.prod μ = ∫ z, f z ∂μ.prod ν :=
0 commit comments