|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Rémy Degenne. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Rémy Degenne |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module measure_theory.function.conditional_expectation.unique |
| 7 | +! leanprover-community/mathlib commit d8bbb04e2d2a44596798a9207ceefc0fb236e41e |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.MeasureTheory.Function.AEEqOfIntegral |
| 12 | +import Mathlib.MeasureTheory.Function.ConditionalExpectation.AEMeasurable |
| 13 | + |
| 14 | +/-! |
| 15 | +# Uniqueness of the conditional expectation |
| 16 | +
|
| 17 | +Two Lp functions `f, g` which are almost everywhere strongly measurable with respect to a σ-algebra |
| 18 | +`m` and verify `∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ` for all `m`-measurable sets `s` are equal |
| 19 | +almost everywhere. This proves the uniqueness of the conditional expectation, which is not yet |
| 20 | +defined in this file but is introduced in |
| 21 | +`Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic`. |
| 22 | +
|
| 23 | +## Main statements |
| 24 | +
|
| 25 | +* `Lp.ae_eq_of_forall_set_integral_eq'`: two `Lp` functions verifying the equality of integrals |
| 26 | + defining the conditional expectation are equal. |
| 27 | +* `ae_eq_of_forall_set_integral_eq_of_sigma_finite'`: two functions verifying the equality of |
| 28 | + integrals defining the conditional expectation are equal almost everywhere. |
| 29 | + Requires `[SigmaFinite (μ.trim hm)]`. |
| 30 | +
|
| 31 | +-/ |
| 32 | + |
| 33 | +set_option linter.uppercaseLean3 false |
| 34 | + |
| 35 | +open scoped ENNReal MeasureTheory |
| 36 | + |
| 37 | +namespace MeasureTheory |
| 38 | + |
| 39 | +variable {α E' F' 𝕜 : Type _} {p : ℝ≥0∞} {m m0 : MeasurableSpace α} {μ : Measure α} [IsROrC 𝕜] |
| 40 | + -- 𝕜 for ℝ or ℂ |
| 41 | + -- E' for an inner product space on which we compute integrals |
| 42 | + [NormedAddCommGroup E'] |
| 43 | + [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace ℝ E'] |
| 44 | + -- F' for integrals on a Lp submodule |
| 45 | + [NormedAddCommGroup F'] |
| 46 | + [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] |
| 47 | + |
| 48 | +section UniquenessOfConditionalExpectation |
| 49 | + |
| 50 | +/-! ## Uniqueness of the conditional expectation -/ |
| 51 | + |
| 52 | +theorem lpMeas.ae_eq_zero_of_forall_set_integral_eq_zero (hm : m ≤ m0) (f : lpMeas E' 𝕜 m p μ) |
| 53 | + (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) |
| 54 | + -- Porting note: needed to add explicit casts in the next two hypotheses |
| 55 | + (hf_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn (f : Lp E' p μ) s μ) |
| 56 | + (hf_zero : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, (f : Lp E' p μ) x ∂μ = 0) : |
| 57 | + f =ᵐ[μ] (0 : α → E') := by |
| 58 | + obtain ⟨g, hg_sm, hfg⟩ := lpMeas.ae_fin_strongly_measurable' hm f hp_ne_zero hp_ne_top |
| 59 | + refine' hfg.trans _ |
| 60 | + -- Porting note: added |
| 61 | + unfold Filter.EventuallyEq at hfg |
| 62 | + refine' ae_eq_zero_of_forall_set_integral_eq_of_finStronglyMeasurable_trim hm _ _ hg_sm |
| 63 | + · intro s hs hμs |
| 64 | + have hfg_restrict : f =ᵐ[μ.restrict s] g := ae_restrict_of_ae hfg |
| 65 | + rw [IntegrableOn, integrable_congr hfg_restrict.symm] |
| 66 | + exact hf_int_finite s hs hμs |
| 67 | + · intro s hs hμs |
| 68 | + have hfg_restrict : f =ᵐ[μ.restrict s] g := ae_restrict_of_ae hfg |
| 69 | + rw [integral_congr_ae hfg_restrict.symm] |
| 70 | + exact hf_zero s hs hμs |
| 71 | +#align measure_theory.Lp_meas.ae_eq_zero_of_forall_set_integral_eq_zero MeasureTheory.lpMeas.ae_eq_zero_of_forall_set_integral_eq_zero |
| 72 | + |
| 73 | +variable (𝕜) |
| 74 | + |
| 75 | +theorem Lp.ae_eq_zero_of_forall_set_integral_eq_zero' (hm : m ≤ m0) (f : Lp E' p μ) |
| 76 | + (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) |
| 77 | + (hf_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn f s μ) |
| 78 | + (hf_zero : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → (∫ x in s, f x ∂μ) = 0) |
| 79 | + (hf_meas : AEStronglyMeasurable' m f μ) : f =ᵐ[μ] 0 := by |
| 80 | + let f_meas : lpMeas E' 𝕜 m p μ := ⟨f, hf_meas⟩ |
| 81 | + -- Porting note: `simp only` does not call `rfl` to try to close the goal. See https://github.com/leanprover-community/mathlib4/issues/5025 |
| 82 | + have hf_f_meas : f =ᵐ[μ] f_meas := by simp only [Subtype.coe_mk]; rfl |
| 83 | + refine' hf_f_meas.trans _ |
| 84 | + refine' lpMeas.ae_eq_zero_of_forall_set_integral_eq_zero hm f_meas hp_ne_zero hp_ne_top _ _ |
| 85 | + · intro s hs hμs |
| 86 | + have hfg_restrict : f =ᵐ[μ.restrict s] f_meas := ae_restrict_of_ae hf_f_meas |
| 87 | + rw [IntegrableOn, integrable_congr hfg_restrict.symm] |
| 88 | + exact hf_int_finite s hs hμs |
| 89 | + · intro s hs hμs |
| 90 | + have hfg_restrict : f =ᵐ[μ.restrict s] f_meas := ae_restrict_of_ae hf_f_meas |
| 91 | + rw [integral_congr_ae hfg_restrict.symm] |
| 92 | + exact hf_zero s hs hμs |
| 93 | +#align measure_theory.Lp.ae_eq_zero_of_forall_set_integral_eq_zero' MeasureTheory.Lp.ae_eq_zero_of_forall_set_integral_eq_zero' |
| 94 | + |
| 95 | +/-- **Uniqueness of the conditional expectation** -/ |
| 96 | +theorem Lp.ae_eq_of_forall_set_integral_eq' (hm : m ≤ m0) (f g : Lp E' p μ) (hp_ne_zero : p ≠ 0) |
| 97 | + (hp_ne_top : p ≠ ∞) (hf_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn f s μ) |
| 98 | + (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) |
| 99 | + (hfg : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → (∫ x in s, f x ∂μ) = ∫ x in s, g x ∂μ) |
| 100 | + (hf_meas : AEStronglyMeasurable' m f μ) (hg_meas : AEStronglyMeasurable' m g μ) : |
| 101 | + f =ᵐ[μ] g := by |
| 102 | + suffices h_sub : ⇑(f - g) =ᵐ[μ] 0 |
| 103 | + · rw [← sub_ae_eq_zero]; exact (Lp.coeFn_sub f g).symm.trans h_sub |
| 104 | + have hfg' : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → (∫ x in s, (f - g) x ∂μ) = 0 := by |
| 105 | + intro s hs hμs |
| 106 | + rw [integral_congr_ae (ae_restrict_of_ae (Lp.coeFn_sub f g))] |
| 107 | + rw [integral_sub' (hf_int_finite s hs hμs) (hg_int_finite s hs hμs)] |
| 108 | + exact sub_eq_zero.mpr (hfg s hs hμs) |
| 109 | + have hfg_int : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn (⇑(f - g)) s μ := by |
| 110 | + intro s hs hμs |
| 111 | + rw [IntegrableOn, integrable_congr (ae_restrict_of_ae (Lp.coeFn_sub f g))] |
| 112 | + exact (hf_int_finite s hs hμs).sub (hg_int_finite s hs hμs) |
| 113 | + have hfg_meas : AEStronglyMeasurable' m (⇑(f - g)) μ := |
| 114 | + AEStronglyMeasurable'.congr (hf_meas.sub hg_meas) (Lp.coeFn_sub f g).symm |
| 115 | + exact |
| 116 | + Lp.ae_eq_zero_of_forall_set_integral_eq_zero' 𝕜 hm (f - g) hp_ne_zero hp_ne_top hfg_int hfg' |
| 117 | + hfg_meas |
| 118 | +#align measure_theory.Lp.ae_eq_of_forall_set_integral_eq' MeasureTheory.Lp.ae_eq_of_forall_set_integral_eq' |
| 119 | + |
| 120 | +variable {𝕜} |
| 121 | + |
| 122 | +theorem ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] |
| 123 | + {f g : α → F'} (hf_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn f s μ) |
| 124 | + (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) |
| 125 | + (hfg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → (∫ x in s, f x ∂μ) = ∫ x in s, g x ∂μ) |
| 126 | + (hfm : AEStronglyMeasurable' m f μ) (hgm : AEStronglyMeasurable' m g μ) : f =ᵐ[μ] g := by |
| 127 | + rw [← ae_eq_trim_iff_of_aeStronglyMeasurable' hm hfm hgm] |
| 128 | + have hf_mk_int_finite : |
| 129 | + ∀ s, MeasurableSet[m] s → μ.trim hm s < ∞ → @IntegrableOn _ _ m _ (hfm.mk f) s (μ.trim hm) := by |
| 130 | + intro s hs hμs |
| 131 | + rw [trim_measurableSet_eq hm hs] at hμs |
| 132 | + -- Porting note: `rw [IntegrableOn]` fails with |
| 133 | + -- synthesized type class instance is not definitionally equal to expression inferred by typing |
| 134 | + -- rules, synthesized m0 inferred m |
| 135 | + unfold IntegrableOn |
| 136 | + rw [restrict_trim hm _ hs] |
| 137 | + refine' Integrable.trim hm _ hfm.stronglyMeasurable_mk |
| 138 | + exact Integrable.congr (hf_int_finite s hs hμs) (ae_restrict_of_ae hfm.ae_eq_mk) |
| 139 | + have hg_mk_int_finite : |
| 140 | + ∀ s, MeasurableSet[m] s → μ.trim hm s < ∞ → @IntegrableOn _ _ m _ (hgm.mk g) s (μ.trim hm) := by |
| 141 | + intro s hs hμs |
| 142 | + rw [trim_measurableSet_eq hm hs] at hμs |
| 143 | + -- Porting note: `rw [IntegrableOn]` fails with |
| 144 | + -- synthesized type class instance is not definitionally equal to expression inferred by typing |
| 145 | + -- rules, synthesized m0 inferred m |
| 146 | + unfold IntegrableOn |
| 147 | + rw [restrict_trim hm _ hs] |
| 148 | + refine' Integrable.trim hm _ hgm.stronglyMeasurable_mk |
| 149 | + exact Integrable.congr (hg_int_finite s hs hμs) (ae_restrict_of_ae hgm.ae_eq_mk) |
| 150 | + have hfg_mk_eq : |
| 151 | + ∀ s : Set α, |
| 152 | + MeasurableSet[m] s → |
| 153 | + μ.trim hm s < ∞ → (∫ x in s, hfm.mk f x ∂μ.trim hm) = ∫ x in s, hgm.mk g x ∂μ.trim hm := by |
| 154 | + intro s hs hμs |
| 155 | + rw [trim_measurableSet_eq hm hs] at hμs |
| 156 | + rw [restrict_trim hm _ hs, ← integral_trim hm hfm.stronglyMeasurable_mk, ← |
| 157 | + integral_trim hm hgm.stronglyMeasurable_mk, |
| 158 | + integral_congr_ae (ae_restrict_of_ae hfm.ae_eq_mk.symm), |
| 159 | + integral_congr_ae (ae_restrict_of_ae hgm.ae_eq_mk.symm)] |
| 160 | + exact hfg_eq s hs hμs |
| 161 | + exact ae_eq_of_forall_set_integral_eq_of_sigmaFinite hf_mk_int_finite hg_mk_int_finite hfg_mk_eq |
| 162 | +#align measure_theory.ae_eq_of_forall_set_integral_eq_of_sigma_finite' MeasureTheory.ae_eq_of_forall_set_integral_eq_of_sigmaFinite' |
| 163 | + |
| 164 | +end UniquenessOfConditionalExpectation |
| 165 | + |
| 166 | +section IntegralNormLE |
| 167 | + |
| 168 | +variable {s : Set α} |
| 169 | + |
| 170 | +/-- Let `m` be a sub-σ-algebra of `m0`, `f` a `m0`-measurable function and `g` a `m`-measurable |
| 171 | +function, such that their integrals coincide on `m`-measurable sets with finite measure. |
| 172 | +Then `∫ x in s, ‖g x‖ ∂μ ≤ ∫ x in s, ‖f x‖ ∂μ` on all `m`-measurable sets with finite measure. -/ |
| 173 | +theorem integral_norm_le_of_forall_fin_meas_integral_eq (hm : m ≤ m0) {f g : α → ℝ} |
| 174 | + (hf : StronglyMeasurable f) (hfi : IntegrableOn f s μ) (hg : StronglyMeasurable[m] g) |
| 175 | + (hgi : IntegrableOn g s μ) |
| 176 | + (hgf : ∀ t, MeasurableSet[m] t → μ t < ∞ → (∫ x in t, g x ∂μ) = ∫ x in t, f x ∂μ) |
| 177 | + (hs : MeasurableSet[m] s) (hμs : μ s ≠ ∞) : (∫ x in s, ‖g x‖ ∂μ) ≤ ∫ x in s, ‖f x‖ ∂μ := by |
| 178 | + rw [integral_norm_eq_pos_sub_neg hgi, integral_norm_eq_pos_sub_neg hfi] |
| 179 | + have h_meas_nonneg_g : MeasurableSet[m] {x | 0 ≤ g x} := |
| 180 | + (@stronglyMeasurable_const _ _ m _ _).measurableSet_le hg |
| 181 | + have h_meas_nonneg_f : MeasurableSet {x | 0 ≤ f x} := |
| 182 | + stronglyMeasurable_const.measurableSet_le hf |
| 183 | + have h_meas_nonpos_g : MeasurableSet[m] {x | g x ≤ 0} := |
| 184 | + hg.measurableSet_le (@stronglyMeasurable_const _ _ m _ _) |
| 185 | + have h_meas_nonpos_f : MeasurableSet {x | f x ≤ 0} := |
| 186 | + hf.measurableSet_le stronglyMeasurable_const |
| 187 | + refine' sub_le_sub _ _ |
| 188 | + · rw [Measure.restrict_restrict (hm _ h_meas_nonneg_g), Measure.restrict_restrict h_meas_nonneg_f, |
| 189 | + hgf _ (@MeasurableSet.inter α m _ _ h_meas_nonneg_g hs) |
| 190 | + ((measure_mono (Set.inter_subset_right _ _)).trans_lt (lt_top_iff_ne_top.mpr hμs)), |
| 191 | + ← Measure.restrict_restrict (hm _ h_meas_nonneg_g), ← |
| 192 | + Measure.restrict_restrict h_meas_nonneg_f] |
| 193 | + exact set_integral_le_nonneg (hm _ h_meas_nonneg_g) hf hfi |
| 194 | + · rw [Measure.restrict_restrict (hm _ h_meas_nonpos_g), Measure.restrict_restrict h_meas_nonpos_f, |
| 195 | + hgf _ (@MeasurableSet.inter α m _ _ h_meas_nonpos_g hs) |
| 196 | + ((measure_mono (Set.inter_subset_right _ _)).trans_lt (lt_top_iff_ne_top.mpr hμs)), |
| 197 | + ← Measure.restrict_restrict (hm _ h_meas_nonpos_g), ← |
| 198 | + Measure.restrict_restrict h_meas_nonpos_f] |
| 199 | + exact set_integral_nonpos_le (hm _ h_meas_nonpos_g) hf hfi |
| 200 | +#align measure_theory.integral_norm_le_of_forall_fin_meas_integral_eq MeasureTheory.integral_norm_le_of_forall_fin_meas_integral_eq |
| 201 | + |
| 202 | +/-- Let `m` be a sub-σ-algebra of `m0`, `f` a `m0`-measurable function and `g` a `m`-measurable |
| 203 | +function, such that their integrals coincide on `m`-measurable sets with finite measure. |
| 204 | +Then `∫⁻ x in s, ‖g x‖₊ ∂μ ≤ ∫⁻ x in s, ‖f x‖₊ ∂μ` on all `m`-measurable sets with finite |
| 205 | +measure. -/ |
| 206 | +theorem lintegral_nnnorm_le_of_forall_fin_meas_integral_eq (hm : m ≤ m0) {f g : α → ℝ} |
| 207 | + (hf : StronglyMeasurable f) (hfi : IntegrableOn f s μ) (hg : StronglyMeasurable[m] g) |
| 208 | + (hgi : IntegrableOn g s μ) |
| 209 | + (hgf : ∀ t, MeasurableSet[m] t → μ t < ∞ → (∫ x in t, g x ∂μ) = ∫ x in t, f x ∂μ) |
| 210 | + (hs : MeasurableSet[m] s) (hμs : μ s ≠ ∞) : (∫⁻ x in s, ‖g x‖₊ ∂μ) ≤ ∫⁻ x in s, ‖f x‖₊ ∂μ := by |
| 211 | + rw [← ofReal_integral_norm_eq_lintegral_nnnorm hfi, ← |
| 212 | + ofReal_integral_norm_eq_lintegral_nnnorm hgi, ENNReal.ofReal_le_ofReal_iff] |
| 213 | + · exact integral_norm_le_of_forall_fin_meas_integral_eq hm hf hfi hg hgi hgf hs hμs |
| 214 | + · exact integral_nonneg fun x => norm_nonneg _ |
| 215 | +#align measure_theory.lintegral_nnnorm_le_of_forall_fin_meas_integral_eq MeasureTheory.lintegral_nnnorm_le_of_forall_fin_meas_integral_eq |
| 216 | + |
| 217 | +end IntegralNormLE |
| 218 | + |
| 219 | +end MeasureTheory |
0 commit comments