@@ -60,7 +60,7 @@ variable [RingHomIsometric σ₂₃]
60
60
61
61
theorem opNorm_le_bound₂ (f : E →SL[σ₁₃] F →SL[σ₂₃] G) {C : ℝ} (h0 : 0 ≤ C)
62
62
(hC : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) : ‖f‖ ≤ C :=
63
- f.opNorm_le_bound h0 fun x => (f x).opNorm_le_bound (mul_nonneg h0 (norm_nonneg _) ) <| hC x
63
+ f.opNorm_le_bound h0 fun x => (f x).opNorm_le_bound (by positivity ) <| hC x
64
64
65
65
66
66
theorem le_opNorm₂ [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (x : E) (y : F) :
@@ -300,7 +300,7 @@ variable (Eₗ) {𝕜 E Fₗ Gₗ}
300
300
/-- Apply `L(x,-)` pointwise to bilinear maps, as a continuous bilinear map -/
301
301
@[simps! apply]
302
302
def precompR (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) : E →L[𝕜] (Eₗ →L[𝕜] Fₗ) →L[𝕜] Eₗ →L[𝕜] Gₗ :=
303
- ( compL 𝕜 Eₗ Fₗ Gₗ).comp L
303
+ compL 𝕜 Eₗ Fₗ Gₗ ∘L L
304
304
305
305
/-- Apply `L(-,y)` pointwise to bilinear maps, as a continuous bilinear map -/
306
306
def precompL (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) : (Eₗ →L[𝕜] E) →L[𝕜] Fₗ →L[𝕜] Eₗ →L[𝕜] Gₗ :=
@@ -312,7 +312,7 @@ def precompL (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) : (Eₗ →L[𝕜] E) →L[
312
312
theorem norm_precompR_le (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) : ‖precompR Eₗ L‖ ≤ ‖L‖ :=
313
313
calc
314
314
‖precompR Eₗ L‖ ≤ ‖compL 𝕜 Eₗ Fₗ Gₗ‖ * ‖L‖ := opNorm_comp_le _ _
315
- _ ≤ 1 * ‖L‖ := mul_le_mul_of_nonneg_right (norm_compL_le _ _ _ _) (norm_nonneg L)
315
+ _ ≤ 1 * ‖L‖ := by gcongr; apply norm_compL_le
316
316
_ = ‖L‖ := by rw [one_mul]
317
317
318
318
theorem norm_precompL_le (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) : ‖precompL Eₗ L‖ ≤ ‖L‖ := by
@@ -364,15 +364,15 @@ is the product of the norms. -/
364
364
@[simp]
365
365
theorem norm_smulRight_apply (c : E →L[𝕜] 𝕜) (f : Fₗ) : ‖smulRight c f‖ = ‖c‖ * ‖f‖ := by
366
366
refine le_antisymm ?_ ?_
367
- · refine opNorm_le_bound _ (mul_nonneg (norm_nonneg _) (norm_nonneg _) ) fun x => ?_
367
+ · refine opNorm_le_bound _ (by positivity ) fun x => ?_
368
368
calc
369
369
‖c x • f‖ = ‖c x‖ * ‖f‖ := norm_smul _ _
370
- _ ≤ ‖c‖ * ‖x‖ * ‖f‖ := mul_le_mul_of_nonneg_right (le_opNorm _ _) (norm_nonneg _)
370
+ _ ≤ ‖c‖ * ‖x‖ * ‖f‖ := by gcongr; apply le_opNorm
371
371
_ = ‖c‖ * ‖f‖ * ‖x‖ := by ring
372
372
· obtain hf | hf := (norm_nonneg f).eq_or_gt
373
373
· simp [hf]
374
374
· rw [← le_div_iff₀ hf]
375
- refine opNorm_le_bound _ (div_nonneg (norm_nonneg _) (norm_nonneg f) ) fun x => ?_
375
+ refine opNorm_le_bound _ (by positivity ) fun x => ?_
376
376
rw [div_mul_eq_mul_div, le_div_iff₀ hf]
377
377
calc
378
378
‖c x‖ * ‖f‖ = ‖c x • f‖ := (norm_smul _ _).symm
0 commit comments