|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Aaron Anderson. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Aaron Anderson |
| 5 | +! This file was ported from Lean 3 source module order.lattice_intervals |
| 6 | +! leanprover-community/mathlib commit d012cd09a9b256d870751284dd6a29882b0be105 |
| 7 | +! Please do not edit these lines, except to modify the commit id |
| 8 | +! if you have ported upstream changes. |
| 9 | +-/ |
| 10 | +import Mathlib.Order.Bounds.Basic |
| 11 | + |
| 12 | +/-! |
| 13 | +# Intervals in Lattices |
| 14 | +
|
| 15 | +In this file, we provide instances of lattice structures on intervals within lattices. |
| 16 | +Some of them depend on the order of the endpoints of the interval, and thus are not made |
| 17 | +global instances. These are probably not all of the lattice instances that could be placed on these |
| 18 | +intervals, but more can be added easily along the same lines when needed. |
| 19 | +
|
| 20 | +## Main definitions |
| 21 | +
|
| 22 | +In the following, `*` can represent either `c`, `o`, or `i`. |
| 23 | + * `Set.Ic*.order_bot` |
| 24 | + * `Set.Ii*.semillatice_inf` |
| 25 | + * `Set.I*c.order_top` |
| 26 | + * `Set.I*c.semillatice_inf` |
| 27 | + * `Set.I**.lattice` |
| 28 | + * `Set.Iic.bounded_order`, within an `order_bot` |
| 29 | + * `Set.Ici.bounded_order`, within an `order_top` |
| 30 | +-/ |
| 31 | + |
| 32 | + |
| 33 | +variable {α : Type _} |
| 34 | + |
| 35 | +namespace Set |
| 36 | + |
| 37 | +namespace Ico |
| 38 | + |
| 39 | +instance semilatticeInf [SemilatticeInf α] {a b : α} : SemilatticeInf (Ico a b) := |
| 40 | + Subtype.semilatticeInf fun _ _ hx hy => ⟨le_inf hx.1 hy.1, lt_of_le_of_lt inf_le_left hx.2⟩ |
| 41 | + |
| 42 | +/-- `Ico a b` has a bottom element whenever `a < b`. -/ |
| 43 | +@[reducible] |
| 44 | +protected def orderBot [PartialOrder α] {a b : α} (h : a < b) : OrderBot (Ico a b) := |
| 45 | + (isLeast_Ico h).orderBot |
| 46 | +#align set.Ico.order_bot Set.Ico.orderBot |
| 47 | + |
| 48 | +end Ico |
| 49 | + |
| 50 | +namespace Iio |
| 51 | + |
| 52 | +instance semilatticeInf [SemilatticeInf α] {a : α} : SemilatticeInf (Iio a) := |
| 53 | + Subtype.semilatticeInf fun _ _ hx _ => lt_of_le_of_lt inf_le_left hx |
| 54 | + |
| 55 | +end Iio |
| 56 | + |
| 57 | +namespace Ioc |
| 58 | + |
| 59 | +instance semilatticeSup [SemilatticeSup α] {a b : α} : SemilatticeSup (Ioc a b) := |
| 60 | + Subtype.semilatticeSup fun _ _ hx hy => ⟨lt_of_lt_of_le hx.1 le_sup_left, sup_le hx.2 hy.2⟩ |
| 61 | + |
| 62 | +/-- `Ioc a b` has a top element whenever `a < b`. -/ |
| 63 | +@[reducible] |
| 64 | +protected def orderTop [PartialOrder α] {a b : α} (h : a < b) : OrderTop (Ioc a b) := |
| 65 | + (isGreatest_Ioc h).orderTop |
| 66 | +#align set.Ioc.order_top Set.Ioc.orderTop |
| 67 | + |
| 68 | +end Ioc |
| 69 | + |
| 70 | +namespace Ioi |
| 71 | + |
| 72 | +instance semilatticeSup [SemilatticeSup α] {a : α} : SemilatticeSup (Ioi a) := |
| 73 | + Subtype.semilatticeSup fun _ _ hx _ => lt_of_lt_of_le hx le_sup_left |
| 74 | + |
| 75 | +end Ioi |
| 76 | + |
| 77 | +namespace Iic |
| 78 | + |
| 79 | +instance semilatticeInf [SemilatticeInf α] {a : α} : SemilatticeInf (Iic a) := |
| 80 | + Subtype.semilatticeInf fun _ _ hx _ => le_trans inf_le_left hx |
| 81 | + |
| 82 | +instance semilatticeSup [SemilatticeSup α] {a : α} : SemilatticeSup (Iic a) := |
| 83 | + Subtype.semilatticeSup fun _ _ hx hy => sup_le hx hy |
| 84 | + |
| 85 | +instance [Lattice α] {a : α} : Lattice (Iic a) := |
| 86 | + { Iic.semilatticeInf, Iic.semilatticeSup with } |
| 87 | + |
| 88 | +instance orderTop [Preorder α] {a : α} : |
| 89 | + OrderTop (Iic a) where |
| 90 | + top := ⟨a, le_refl a⟩ |
| 91 | + le_top x := x.prop |
| 92 | + |
| 93 | +@[simp] |
| 94 | +theorem coe_top [Preorder α] {a : α} : (⊤ : Iic a) = a := |
| 95 | + rfl |
| 96 | +#align set.Iic.coe_top Set.Iic.coe_top |
| 97 | + |
| 98 | +instance orderBot [Preorder α] [OrderBot α] {a : α} : |
| 99 | + OrderBot (Iic a) where |
| 100 | + bot := ⟨⊥, bot_le⟩ |
| 101 | + bot_le := fun ⟨_, _⟩ => Subtype.mk_le_mk.2 bot_le |
| 102 | + |
| 103 | +@[simp] |
| 104 | +theorem coe_bot [Preorder α] [OrderBot α] {a : α} : (⊥ : Iic a) = (⊥ : α) := |
| 105 | + rfl |
| 106 | +#align set.Iic.coe_bot Set.Iic.coe_bot |
| 107 | + |
| 108 | +instance [Preorder α] [OrderBot α] {a : α} : BoundedOrder (Iic a) := |
| 109 | + { Iic.orderTop, Iic.orderBot with } |
| 110 | + |
| 111 | +end Iic |
| 112 | + |
| 113 | +namespace Ici |
| 114 | + |
| 115 | +instance semilatticeInf [SemilatticeInf α] {a : α} : SemilatticeInf (Ici a) := |
| 116 | + Subtype.semilatticeInf fun _ _ hx hy => le_inf hx hy |
| 117 | + |
| 118 | +instance semilatticeSup [SemilatticeSup α] {a : α} : SemilatticeSup (Ici a) := |
| 119 | + Subtype.semilatticeSup fun _ _ hx _ => le_trans hx le_sup_left |
| 120 | + |
| 121 | +instance lattice [Lattice α] {a : α} : Lattice (Ici a) := |
| 122 | + { Ici.semilatticeInf, Ici.semilatticeSup with } |
| 123 | + |
| 124 | +instance distribLattice [DistribLattice α] {a : α} : DistribLattice (Ici a) := |
| 125 | + { Ici.lattice with le_sup_inf := fun _ _ _ => le_sup_inf } |
| 126 | + |
| 127 | +instance orderBot [Preorder α] {a : α} : |
| 128 | + OrderBot (Ici a) where |
| 129 | + bot := ⟨a, le_refl a⟩ |
| 130 | + bot_le x := x.prop |
| 131 | + |
| 132 | +@[simp] |
| 133 | +theorem coe_bot [Preorder α] {a : α} : ↑(⊥ : Ici a) = a := |
| 134 | + rfl |
| 135 | +#align set.Ici.coe_bot Set.Ici.coe_bot |
| 136 | + |
| 137 | +instance orderTop [Preorder α] [OrderTop α] {a : α} : |
| 138 | + OrderTop (Ici a) where |
| 139 | + top := ⟨⊤, le_top⟩ |
| 140 | + le_top := fun ⟨_, _⟩ => Subtype.mk_le_mk.2 le_top |
| 141 | + |
| 142 | +@[simp] |
| 143 | +theorem coe_top [Preorder α] [OrderTop α] {a : α} : ↑(⊤ : Ici a) = (⊤ : α) := |
| 144 | + rfl |
| 145 | +#align set.Ici.coe_top Set.Ici.coe_top |
| 146 | + |
| 147 | +instance boundedOrder [Preorder α] [OrderTop α] {a : α} : BoundedOrder (Ici a) := |
| 148 | + { Ici.orderTop, Ici.orderBot with } |
| 149 | + |
| 150 | +end Ici |
| 151 | + |
| 152 | +namespace Icc |
| 153 | + |
| 154 | +instance semilatticeInf [SemilatticeInf α] {a b : α} : SemilatticeInf (Icc a b) := |
| 155 | + Subtype.semilatticeInf fun _ _ hx hy => ⟨le_inf hx.1 hy.1, le_trans inf_le_left hx.2⟩ |
| 156 | + |
| 157 | +instance semilatticeSup [SemilatticeSup α] {a b : α} : SemilatticeSup (Icc a b) := |
| 158 | + Subtype.semilatticeSup fun _ _ hx hy => ⟨le_trans hx.1 le_sup_left, sup_le hx.2 hy.2⟩ |
| 159 | + |
| 160 | +instance lattice [Lattice α] {a b : α} : Lattice (Icc a b) := |
| 161 | + { Icc.semilatticeInf, Icc.semilatticeSup with } |
| 162 | + |
| 163 | +/-- `Icc a b` has a bottom element whenever `a ≤ b`. -/ |
| 164 | +@[reducible] |
| 165 | +protected def orderBot [Preorder α] {a b : α} (h : a ≤ b) : OrderBot (Icc a b) := |
| 166 | + (isLeast_Icc h).orderBot |
| 167 | +#align set.Icc.order_bot Set.Icc.orderBot |
| 168 | + |
| 169 | +/-- `Icc a b` has a top element whenever `a ≤ b`. -/ |
| 170 | +@[reducible] |
| 171 | +protected def orderTop [Preorder α] {a b : α} (h : a ≤ b) : OrderTop (Icc a b) := |
| 172 | + (isGreatest_Icc h).orderTop |
| 173 | +#align set.Icc.order_top Set.Icc.orderTop |
| 174 | + |
| 175 | +/-- `Icc a b` is a `bounded_order` whenever `a ≤ b`. -/ |
| 176 | +@[reducible] |
| 177 | +protected def boundedOrder [Preorder α] {a b : α} (h : a ≤ b) : BoundedOrder (Icc a b) := |
| 178 | + { Icc.orderTop h, Icc.orderBot h with } |
| 179 | +#align set.Icc.bounded_order Set.Icc.boundedOrder |
| 180 | + |
| 181 | +end Icc |
| 182 | + |
| 183 | +end Set |
0 commit comments