|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Bhavik Mehta. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Bhavik Mehta |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module category_theory.closed.functor |
| 7 | +! leanprover-community/mathlib commit cea27692b3fdeb328a2ddba6aabf181754543184 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.CategoryTheory.Closed.Cartesian |
| 12 | +import Mathlib.CategoryTheory.Limits.Preserves.Shapes.BinaryProducts |
| 13 | +import Mathlib.CategoryTheory.Adjunction.FullyFaithful |
| 14 | + |
| 15 | +/-! |
| 16 | +# Cartesian closed functors |
| 17 | +
|
| 18 | +Define the exponential comparison morphisms for a functor which preserves binary products, and use |
| 19 | +them to define a cartesian closed functor: one which (naturally) preserves exponentials. |
| 20 | +
|
| 21 | +Define the Frobenius morphism, and show it is an isomorphism iff the exponential comparison is an |
| 22 | +isomorphism. |
| 23 | +
|
| 24 | +## TODO |
| 25 | +Some of the results here are true more generally for closed objects and for closed monoidal |
| 26 | +categories, and these could be generalised. |
| 27 | +
|
| 28 | +## References |
| 29 | +https://ncatlab.org/nlab/show/cartesian+closed+functor |
| 30 | +https://ncatlab.org/nlab/show/Frobenius+reciprocity |
| 31 | +
|
| 32 | +## Tags |
| 33 | +Frobenius reciprocity, cartesian closed functor |
| 34 | +
|
| 35 | +-/ |
| 36 | + |
| 37 | + |
| 38 | +noncomputable section |
| 39 | + |
| 40 | +namespace CategoryTheory |
| 41 | + |
| 42 | +open Category Limits CartesianClosed |
| 43 | + |
| 44 | +universe v u u' |
| 45 | + |
| 46 | +variable {C : Type u} [Category.{v} C] |
| 47 | + |
| 48 | +variable {D : Type u'} [Category.{v} D] |
| 49 | + |
| 50 | +variable [HasFiniteProducts C] [HasFiniteProducts D] |
| 51 | + |
| 52 | +variable (F : C ⥤ D) {L : D ⥤ C} |
| 53 | + |
| 54 | +/-- The Frobenius morphism for an adjunction `L ⊣ F` at `A` is given by the morphism |
| 55 | +
|
| 56 | + L(FA ⨯ B) ⟶ LFA ⨯ LB ⟶ A ⨯ LB |
| 57 | +
|
| 58 | +natural in `B`, where the first morphism is the product comparison and the latter uses the counit |
| 59 | +of the adjunction. |
| 60 | +
|
| 61 | +We will show that if `C` and `D` are cartesian closed, then this morphism is an isomorphism for all |
| 62 | +`A` iff `F` is a cartesian closed functor, i.e. it preserves exponentials. |
| 63 | +-/ |
| 64 | +def frobeniusMorphism (h : L ⊣ F) (A : C) : |
| 65 | + prod.functor.obj (F.obj A) ⋙ L ⟶ L ⋙ prod.functor.obj A := |
| 66 | + prodComparisonNatTrans L (F.obj A) ≫ whiskerLeft _ (prod.functor.map (h.counit.app _)) |
| 67 | +#align category_theory.frobenius_morphism CategoryTheory.frobeniusMorphism |
| 68 | + |
| 69 | +/-- If `F` is full and faithful and has a left adjoint `L` which preserves binary products, then the |
| 70 | +Frobenius morphism is an isomorphism. |
| 71 | +-/ |
| 72 | +instance frobeniusMorphism_iso_of_preserves_binary_products (h : L ⊣ F) (A : C) |
| 73 | + [PreservesLimitsOfShape (Discrete WalkingPair) L] [Full F] [Faithful F] : |
| 74 | + IsIso (frobeniusMorphism F h A) := |
| 75 | + suffices ∀ (X : D), IsIso ((frobeniusMorphism F h A).app X) from NatIso.isIso_of_isIso_app _ |
| 76 | + fun B ↦ by dsimp [frobeniusMorphism]; infer_instance |
| 77 | +#align category_theory.frobenius_morphism_iso_of_preserves_binary_products CategoryTheory.frobeniusMorphism_iso_of_preserves_binary_products |
| 78 | + |
| 79 | +variable [CartesianClosed C] [CartesianClosed D] |
| 80 | + |
| 81 | +variable [PreservesLimitsOfShape (Discrete WalkingPair) F] |
| 82 | + |
| 83 | +/-- The exponential comparison map. |
| 84 | +`F` is a cartesian closed functor if this is an iso for all `A`. |
| 85 | +-/ |
| 86 | +def expComparison (A : C) : exp A ⋙ F ⟶ F ⋙ exp (F.obj A) := |
| 87 | + transferNatTrans (exp.adjunction A) (exp.adjunction (F.obj A)) (prodComparisonNatIso F A).inv |
| 88 | +#align category_theory.exp_comparison CategoryTheory.expComparison |
| 89 | + |
| 90 | +theorem expComparison_ev (A B : C) : |
| 91 | + Limits.prod.map (𝟙 (F.obj A)) ((expComparison F A).app B) ≫ (exp.ev (F.obj A)).app (F.obj B) = |
| 92 | + inv (prodComparison F _ _) ≫ F.map ((exp.ev _).app _) := by |
| 93 | + convert transferNatTrans_counit _ _ (prodComparisonNatIso F A).inv B using 2 |
| 94 | + apply IsIso.inv_eq_of_hom_inv_id -- Porting note: was `ext` |
| 95 | + simp only [Limits.prodComparisonNatIso_inv, asIso_inv, NatIso.isIso_inv_app, IsIso.hom_inv_id] |
| 96 | +#align category_theory.exp_comparison_ev CategoryTheory.expComparison_ev |
| 97 | + |
| 98 | +theorem coev_expComparison (A B : C) : |
| 99 | + F.map ((exp.coev A).app B) ≫ (expComparison F A).app (A ⨯ B) = |
| 100 | + (exp.coev _).app (F.obj B) ≫ (exp (F.obj A)).map (inv (prodComparison F A B)) := by |
| 101 | + convert unit_transferNatTrans _ _ (prodComparisonNatIso F A).inv B using 3 |
| 102 | + apply IsIso.inv_eq_of_hom_inv_id -- Porting note: was `ext` |
| 103 | + dsimp |
| 104 | + simp |
| 105 | +#align category_theory.coev_exp_comparison CategoryTheory.coev_expComparison |
| 106 | + |
| 107 | +theorem uncurry_expComparison (A B : C) : |
| 108 | + CartesianClosed.uncurry ((expComparison F A).app B) = |
| 109 | + inv (prodComparison F _ _) ≫ F.map ((exp.ev _).app _) := |
| 110 | + by rw [uncurry_eq, expComparison_ev] |
| 111 | +#align category_theory.uncurry_exp_comparison CategoryTheory.uncurry_expComparison |
| 112 | + |
| 113 | +/-- The exponential comparison map is natural in `A`. -/ |
| 114 | +theorem expComparison_whiskerLeft {A A' : C} (f : A' ⟶ A) : |
| 115 | + expComparison F A ≫ whiskerLeft _ (pre (F.map f)) = |
| 116 | + whiskerRight (pre f) _ ≫ expComparison F A' := by |
| 117 | + ext B |
| 118 | + dsimp |
| 119 | + apply uncurry_injective |
| 120 | + rw [uncurry_natural_left, uncurry_natural_left, uncurry_expComparison, uncurry_pre, |
| 121 | + prod.map_swap_assoc, ← F.map_id, expComparison_ev, ← F.map_id, ← |
| 122 | + prodComparison_inv_natural_assoc, ← prodComparison_inv_natural_assoc, ← F.map_comp, ← |
| 123 | + F.map_comp, prod_map_pre_app_comp_ev] |
| 124 | +#align category_theory.exp_comparison_whisker_left CategoryTheory.expComparison_whiskerLeft |
| 125 | + |
| 126 | +/-- The functor `F` is cartesian closed (ie preserves exponentials) if each natural transformation |
| 127 | +`exp_comparison F A` is an isomorphism |
| 128 | +-/ |
| 129 | +class CartesianClosedFunctor where |
| 130 | + comparison_iso : ∀ A, IsIso (expComparison F A) |
| 131 | +#align category_theory.cartesian_closed_functor CategoryTheory.CartesianClosedFunctor |
| 132 | + |
| 133 | +attribute [instance] CartesianClosedFunctor.comparison_iso |
| 134 | + |
| 135 | +theorem frobeniusMorphism_mate (h : L ⊣ F) (A : C) : |
| 136 | + transferNatTransSelf (h.comp (exp.adjunction A)) ((exp.adjunction (F.obj A)).comp h) |
| 137 | + (frobeniusMorphism F h A) = |
| 138 | + expComparison F A := by |
| 139 | + rw [← Equiv.eq_symm_apply] |
| 140 | + ext B : 2 |
| 141 | + dsimp [frobeniusMorphism, transferNatTransSelf, transferNatTrans, Adjunction.comp] |
| 142 | + simp only [id_comp, comp_id] |
| 143 | + rw [← L.map_comp_assoc, prod.map_id_comp, assoc] |
| 144 | + -- Porting note: need to use `erw` here. |
| 145 | + erw [expComparison_ev] |
| 146 | + rw [prod.map_id_comp, assoc, ← F.map_id, ← prodComparison_inv_natural_assoc, ← F.map_comp] |
| 147 | + -- Porting note: need to use `erw` here. |
| 148 | + erw [exp.ev_coev] |
| 149 | + rw [F.map_id (A ⨯ L.obj B), comp_id] |
| 150 | + apply prod.hom_ext |
| 151 | + · rw [assoc, assoc, ← h.counit_naturality, ← L.map_comp_assoc, assoc, inv_prodComparison_map_fst] |
| 152 | + simp |
| 153 | + · rw [assoc, assoc, ← h.counit_naturality, ← L.map_comp_assoc, assoc, inv_prodComparison_map_snd] |
| 154 | + simp |
| 155 | +#align category_theory.frobenius_morphism_mate CategoryTheory.frobeniusMorphism_mate |
| 156 | + |
| 157 | +/-- |
| 158 | +If the exponential comparison transformation (at `A`) is an isomorphism, then the Frobenius morphism |
| 159 | +at `A` is an isomorphism. |
| 160 | +-/ |
| 161 | +theorem frobeniusMorphism_iso_of_expComparison_iso (h : L ⊣ F) (A : C) |
| 162 | + [i : IsIso (expComparison F A)] : IsIso (frobeniusMorphism F h A) := by |
| 163 | + rw [← frobeniusMorphism_mate F h] at i |
| 164 | + exact @transferNatTransSelf_of_iso _ _ _ _ _ _ _ _ _ _ _ i |
| 165 | +#align category_theory.frobenius_morphism_iso_of_exp_comparison_iso CategoryTheory.frobeniusMorphism_iso_of_expComparison_iso |
| 166 | + |
| 167 | +/-- |
| 168 | +If the Frobenius morphism at `A` is an isomorphism, then the exponential comparison transformation |
| 169 | +(at `A`) is an isomorphism. |
| 170 | +-/ |
| 171 | +theorem expComparison_iso_of_frobeniusMorphism_iso (h : L ⊣ F) (A : C) |
| 172 | + [i : IsIso (frobeniusMorphism F h A)] : IsIso (expComparison F A) := by |
| 173 | + rw [← frobeniusMorphism_mate F h]; infer_instance |
| 174 | +#align category_theory.exp_comparison_iso_of_frobenius_morphism_iso CategoryTheory.expComparison_iso_of_frobeniusMorphism_iso |
| 175 | + |
| 176 | +/-- If `F` is full and faithful, and has a left adjoint which preserves binary products, then it is |
| 177 | +cartesian closed. |
| 178 | +
|
| 179 | +TODO: Show the converse, that if `F` is cartesian closed and its left adjoint preserves binary |
| 180 | +products, then it is full and faithful. |
| 181 | +-/ |
| 182 | +def cartesianClosedFunctorOfLeftAdjointPreservesBinaryProducts (h : L ⊣ F) [Full F] [Faithful F] |
| 183 | + [PreservesLimitsOfShape (Discrete WalkingPair) L] : CartesianClosedFunctor F where |
| 184 | + comparison_iso _ := expComparison_iso_of_frobeniusMorphism_iso F h _ |
| 185 | +#align category_theory.cartesian_closed_functor_of_left_adjoint_preserves_binary_products CategoryTheory.cartesianClosedFunctorOfLeftAdjointPreservesBinaryProducts |
| 186 | + |
| 187 | +end CategoryTheory |
0 commit comments