@@ -56,7 +56,7 @@ theorem lhopital_zero_right_on_Ioo (hab : a < b) (hff' : β x β Ioo a b, HasD
56
56
have hg : β x β Ioo a b, g x β 0 := by
57
57
intro x hx h
58
58
have : Tendsto g (π[<] x) (π 0 ) := by
59
- rw [β h, β nhdsWithin_Ioo_eq_nhdsWithin_Iio hx.1 ]
59
+ rw [β h, β nhdsWithin_Ioo_eq_nhdsLT hx.1 ]
60
60
exact ((hgg' x hx).continuousAt.continuousWithinAt.mono <| sub x hx).tendsto
61
61
obtain β¨y, hyx, hyβ© : β c β Ioo a x, g' c = 0 :=
62
62
exists_hasDerivAt_eq_zero' hx.1 hga this fun y hy => hgg' y <| sub x hx hy
@@ -76,7 +76,7 @@ theorem lhopital_zero_right_on_Ioo (hab : a < b) (hff' : β x β Ioo a b, HasD
76
76
simp only [hβ]
77
77
rw [mul_comm]
78
78
have cmp : β x β Ioo a b, a < c x β§ c x < x := fun x hx => (hc x hx).1
79
- rw [β nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
79
+ rw [β nhdsWithin_Ioo_eq_nhdsGT hab]
80
80
apply tendsto_nhdsWithin_congr this
81
81
apply hdiv.comp
82
82
refine tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _
@@ -95,9 +95,9 @@ theorem lhopital_zero_right_on_Ico (hab : a < b) (hff' : β x β Ioo a b, HasD
95
95
(hdiv : Tendsto (fun x => f' x / g' x) (π[>] a) l) :
96
96
Tendsto (fun x => f x / g x) (π[>] a) l := by
97
97
refine lhopital_zero_right_on_Ioo hab hff' hgg' hg' ?_ ?_ hdiv
98
- Β· rw [β hfa, β nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
98
+ Β· rw [β hfa, β nhdsWithin_Ioo_eq_nhdsGT hab]
99
99
exact ((hcf a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto
100
- Β· rw [β hga, β nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
100
+ Β· rw [β hga, β nhdsWithin_Ioo_eq_nhdsGT hab]
101
101
exact ((hcg a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto
102
102
103
103
theorem lhopital_zero_left_on_Ioo (hab : a < b) (hff' : β x β Ioo a b, HasDerivAt f (f' x) x)
@@ -116,11 +116,11 @@ theorem lhopital_zero_left_on_Ioo (hab : a < b) (hff' : β x β Ioo a b, HasDe
116
116
intro x hx h
117
117
apply hg' _ (by rw [β neg_Ioo] at hx; exact hx)
118
118
rwa [mul_comm, β neg_eq_neg_one_mul, neg_eq_zero] at h)
119
- (hfb.comp tendsto_neg_nhdsWithin_Ioi_neg ) (hgb.comp tendsto_neg_nhdsWithin_Ioi_neg )
119
+ (hfb.comp tendsto_neg_nhdsGT_neg ) (hgb.comp tendsto_neg_nhdsGT_neg )
120
120
(by
121
121
simp only [neg_div_neg_eq, mul_one, mul_neg]
122
- exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_nhdsWithin_Ioi_neg ))
123
- have := this.comp tendsto_neg_nhdsWithin_Iio
122
+ exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_nhdsGT_neg ))
123
+ have := this.comp tendsto_neg_nhdsLT
124
124
unfold Function.comp at this
125
125
simpa only [neg_neg]
126
126
@@ -130,9 +130,9 @@ theorem lhopital_zero_left_on_Ioc (hab : a < b) (hff' : β x β Ioo a b, HasDe
130
130
(hdiv : Tendsto (fun x => f' x / g' x) (π[<] b) l) :
131
131
Tendsto (fun x => f x / g x) (π[<] b) l := by
132
132
refine lhopital_zero_left_on_Ioo hab hff' hgg' hg' ?_ ?_ hdiv
133
- Β· rw [β hfb, β nhdsWithin_Ioo_eq_nhdsWithin_Iio hab]
133
+ Β· rw [β hfb, β nhdsWithin_Ioo_eq_nhdsLT hab]
134
134
exact ((hcf b <| right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto
135
- Β· rw [β hgb, β nhdsWithin_Ioo_eq_nhdsWithin_Iio hab]
135
+ Β· rw [β hgb, β nhdsWithin_Ioo_eq_nhdsLT hab]
136
136
exact ((hcg b <| right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto
137
137
138
138
theorem lhopital_zero_atTop_on_Ioi (hff' : β x β Ioi a, HasDerivAt f (f' x) x)
@@ -153,17 +153,17 @@ theorem lhopital_zero_atTop_on_Ioi (hff' : β x β Ioi a, HasDerivAt f (f' x)
153
153
intro x hx
154
154
refine mul_ne_zero ?_ (neg_ne_zero.mpr <| inv_ne_zero <| pow_ne_zero _ <| fact1 x hx)
155
155
exact hg' _ (fact2 x hx))
156
- (hftop.comp tendsto_inv_zero_atTop ) (hgtop.comp tendsto_inv_zero_atTop )
156
+ (hftop.comp tendsto_inv_nhdsGT_zero ) (hgtop.comp tendsto_inv_nhdsGT_zero )
157
157
(by
158
- refine (tendsto_congr' ?_).mp (hdiv.comp tendsto_inv_zero_atTop )
158
+ refine (tendsto_congr' ?_).mp (hdiv.comp tendsto_inv_nhdsGT_zero )
159
159
rw [eventuallyEq_iff_exists_mem]
160
160
use Ioi 0 , self_mem_nhdsWithin
161
161
intro x hx
162
162
unfold Function.comp
163
163
simp only
164
164
rw [mul_div_mul_right]
165
165
exact neg_ne_zero.mpr (inv_ne_zero <| pow_ne_zero _ <| ne_of_gt hx))
166
- have := this.comp tendsto_inv_atTop_zero'
166
+ have := this.comp tendsto_inv_atTop_nhdsGT_zero
167
167
unfold Function.comp at this
168
168
simpa only [inv_inv]
169
169
@@ -213,9 +213,9 @@ theorem lhopital_zero_right_on_Ico (hab : a < b) (hdf : DifferentiableOn β f (
213
213
(hdiv : Tendsto (fun x => (deriv f) x / (deriv g) x) (π[>] a) l) :
214
214
Tendsto (fun x => f x / g x) (π[>] a) l := by
215
215
refine lhopital_zero_right_on_Ioo hab hdf hg' ?_ ?_ hdiv
216
- Β· rw [β hfa, β nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
216
+ Β· rw [β hfa, β nhdsWithin_Ioo_eq_nhdsGT hab]
217
217
exact ((hcf a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto
218
- Β· rw [β hga, β nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
218
+ Β· rw [β hga, β nhdsWithin_Ioo_eq_nhdsGT hab]
219
219
exact ((hcg a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto
220
220
221
221
theorem lhopital_zero_left_on_Ioo (hab : a < b) (hdf : DifferentiableOn β f (Ioo a b))
@@ -276,7 +276,7 @@ theorem lhopital_zero_nhds_right (hff' : βαΆ x in π[>] a, HasDerivAt f (f'
276
276
rcases hg' with β¨sβ, hsβ, hg'β©
277
277
let s := sβ β© sβ β© sβ
278
278
have hs : s β π[>] a := inter_mem (inter_mem hsβ hsβ) hsβ
279
- rw [mem_nhdsWithin_Ioi_iff_exists_Ioo_subset ] at hs
279
+ rw [mem_nhdsGT_iff_exists_Ioo_subset ] at hs
280
280
rcases hs with β¨u, hau, huβ©
281
281
refine lhopital_zero_right_on_Ioo hau ?_ ?_ ?_ hfa hga hdiv <;>
282
282
intro x hx <;> apply_assumption <;>
@@ -294,7 +294,7 @@ theorem lhopital_zero_nhds_left (hff' : βαΆ x in π[<] a, HasDerivAt f (f'
294
294
rcases hg' with β¨sβ, hsβ, hg'β©
295
295
let s := sβ β© sβ β© sβ
296
296
have hs : s β π[<] a := inter_mem (inter_mem hsβ hsβ) hsβ
297
- rw [mem_nhdsWithin_Iio_iff_exists_Ioo_subset ] at hs
297
+ rw [mem_nhdsLT_iff_exists_Ioo_subset ] at hs
298
298
rcases hs with β¨l, hal, hlβ©
299
299
refine lhopital_zero_left_on_Ioo hal ?_ ?_ ?_ hfa hga hdiv <;> intro x hx <;> apply_assumption <;>
300
300
first | exact (hl hx).1 .1 | exact (hl hx).1 .2 | exact (hl hx).2
0 commit comments