Skip to content

Commit 38cbcf0

Browse files
committed
feat(Algebra/Group/Equiv): add two simp lemmas for MulEquivClass (#17085)
Add two simp lemmas for `MulEquivClass`.
1 parent 5e050d4 commit 38cbcf0

File tree

1 file changed

+12
-0
lines changed

1 file changed

+12
-0
lines changed

Mathlib/Algebra/Group/Equiv/Basic.lean

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -388,6 +388,18 @@ theorem symm_comp_eq {α : Type*} (e : M ≃* N) (f : α → M) (g : α → N) :
388388
e.symm ∘ g = f ↔ g = e ∘ f :=
389389
e.toEquiv.symm_comp_eq f g
390390

391+
@[to_additive (attr := simp)]
392+
theorem _root_.MulEquivClass.apply_coe_symm_apply {α β} [Mul α] [Mul β] {F} [EquivLike F α β]
393+
[MulEquivClass F α β] (e : F) (x : β) :
394+
e ((e : α ≃* β).symm x) = x :=
395+
(e : α ≃* β).right_inv x
396+
397+
@[to_additive (attr := simp)]
398+
theorem _root_.MulEquivClass.coe_symm_apply_apply {α β} [Mul α] [Mul β] {F} [EquivLike F α β]
399+
[MulEquivClass F α β] (e : F) (x : α) :
400+
(e : α ≃* β).symm (e x) = x :=
401+
(e : α ≃* β).left_inv x
402+
391403
end symm
392404

393405
section simps

0 commit comments

Comments
 (0)